8,959 research outputs found

    Interpolation Properties and SAT-based Model Checking

    Full text link
    Craig interpolation is a widespread method in verification, with important applications such as Predicate Abstraction, CounterExample Guided Abstraction Refinement and Lazy Abstraction With Interpolants. Most state-of-the-art model checking techniques based on interpolation require collections of interpolants to satisfy particular properties, to which we refer as "collectives"; they do not hold in general for all interpolation systems and have to be established for each particular system and verification environment. Nevertheless, no systematic approach exists that correlates the individual interpolation systems and compares the necessary collectives. This paper proposes a uniform framework, which encompasses (and generalizes) the most common collectives exploited in verification. We use it for a systematic study of the collectives and of the constraints they pose on propositional interpolation systems used in SAT-based model checking

    Reduction of Interpolants for Logic Synthesis

    Get PDF
    Abstractā€”Craig Interpolation is a state-of-the-art technique for logic synthesis and verification, based on Boolean Satisfiability (SAT). Leveraging the efficacy of SAT algorithms, Craig Interpolation produces solutions quickly to challenging problems such as synthesizing functional dependencies and performing bounded model-checking. Unfortunately, the quality of the solutions is often poor. When interpolants are used to synthesize functional dependencies, the resulting structure of the functions may be unnecessarily complex. In most applications to date, interpolants have been generated directly from the proofs of unsatisfiability that are provided by SAT solvers. In this work, we propose efficient methods based on incremental SAT solving for modifying resolution proofs in order to obtain more compact interpolants. This, in turn, reduces the cost of the logic that is generated for functional dependencies. I

    Interpolant-Based Transition Relation Approximation

    Full text link
    In predicate abstraction, exact image computation is problematic, requiring in the worst case an exponential number of calls to a decision procedure. For this reason, software model checkers typically use a weak approximation of the image. This can result in a failure to prove a property, even given an adequate set of predicates. We present an interpolant-based method for strengthening the abstract transition relation in case of such failures. This approach guarantees convergence given an adequate set of predicates, without requiring an exact image computation. We show empirically that the method converges more rapidly than an earlier method based on counterexample analysis.Comment: Conference Version at CAV 2005. 17 Pages, 9 Figure

    Safety Model Checking with Complementary Approximations

    Full text link
    Formal verification techniques such as model checking, are becoming popular in hardware design. SAT-based model checking techniques such as IC3/PDR, have gained a significant success in hardware industry. In this paper, we present a new framework for SAT-based safety model checking, named Complementary Approximate Reachability (CAR). CAR is based on standard reachability analysis, but instead of maintaining a single sequence of reachable- state sets, CAR maintains two sequences of over- and under- approximate reachable-state sets, checking safety and unsafety at the same time. To construct the two sequences, CAR uses standard Boolean-reasoning algorithms, based on satisfiability solving, one to find a satisfying cube of a satisfiable Boolean formula, and one to provide a minimal unsatisfiable core of an unsatisfiable Boolean formula. We applied CAR to 548 hardware model-checking instances, and compared its performance with IC3/PDR. Our results show that CAR is able to solve 42 instances that cannot be solved by IC3/PDR. When evaluated against a portfolio that includes IC3/PDR and other approaches, CAR is able to solve 21 instances that the other approaches cannot solve. We conclude that CAR should be considered as a valuable member of any algorithmic portfolio for safety model checking

    A Markov Chain Model Checker

    Get PDF
    Markov chains are widely used in the context of performance and reliability evaluation of systems of various nature. Model checking of such chains with respect to a given (branching) temporal logic formula has been proposed for both the discrete [17,6] and the continuous time setting [4,8]. In this paper, we describe a prototype model checker for discrete and continuous-time Markov chains, the Erlangen Twente Markov Chain Checker (EāŠ¢MC2(E \vdash MC^2), where properties are expressed in appropriate extensions of CTL. We illustrate the general bene ts of this approach and discuss the structure of the tool. Furthermore we report on first successful applications of the tool to non-trivial examples, highlighting lessons learned during development and application of (EāŠ¢MC2(E \vdash MC^2)

    Automated incremental software verification

    Get PDF
    Software continuously evolves to meet rapidly changing human needs. Each evolved transformation of a program is expected to preserve important correctness and security properties. Aiming to assure program correctness after a change, formal verification techniques, such as Software Model Checking, have recently benefited from fully automated solutions based on symbolic reasoning and abstraction. However, the majority of the state-of-the-art model checkers are designed that each new software version has to be verified from scratch. In this dissertation, we investigate the new Formal Incremental Verification (FIV) techniques that aim at making software analysis more efficient by reusing invested efforts between verification runs. In order to show that FIV can be built on the top of different verification techniques, we focus on three complementary approaches to automated formal verification. First, we contribute the FIV technique for SAT-based Bounded Model Checking developed to verify programs with (possibly recursive) functions with respect to the set of pre-defined assertions. We present the function-summarization framework based on Craig interpolation that allows extracting and reusing over- approximations of the function behaviors. We introduce the algorithm to revalidate the summaries of one program locally in order to prevent re-verification of another program from scratch. Second, we contribute the technique for simulation relation synthesis for loop-free programs that do not necessarily contain assertions. We introduce an SMT-based abstraction- refinement algorithm that proceeds by guessing a relation and checking whether it is a simulation relation. We present a novel algorithm for discovering simulations symbolically, by means of solving āˆ€āˆƒ-formulas and extracting witnessing Skolem relations. Third, we contribute the FIV technique for SMT-based Unbounded Model Checking developed to verify programs with (possibly nested) loops. We present an algorithm that automatically derives simulations between programs with different loop structures. The automatically synthesized simulation relation is then used to migrate the safe inductive invariants across the evolution boundaries. Finally, we contribute the implementation and evaluation of all our algorithmic contributions, and confirm that the state-of-the-art model checking tools can successfully be extended by the FIV capabilities

    Automated abstraction by incremental refinement in interpolant-based model checking

    Full text link
    Abstractā€”This paper addresses the field of Unbounded Model Checking (UMC) based on SAT engines, where Craig interpolants have recently gained wide acceptance as an automated abstraction technique. We start from the observation that interpolants can be quite effective on large verification instances. As they operate on SAT-generated refutation proofs, interpolants are very good at automatically abstract facts that are not significant for proofs. In this work, we push forward the new idea of generating abstractions without resorting to SAT proofs, and to accept (reject) abstractions whenever they (do not) fulfill given adequacy constraints. We propose an integrated approach smoothly combining the capabilities of interpolation with abstraction and over-approximation techniques, that do not directly derive from SAT refutation proofs. The driving idea of this combination is to incrementally generate, by refinement, an abstract (over-approximate) image, built up from equivalences, implications, ternary and localization abstraction, then (eventually) from SAT refutation proofs. Experimental results, derived from the verification of hard problems, show the robustness of our approach
    • ā€¦
    corecore