1,430 research outputs found

    Probabilistic Interval Temporal Logic and Duration Calculus with Infinite Intervals: Complete Proof Systems

    Full text link
    The paper presents probabilistic extensions of interval temporal logic (ITL) and duration calculus (DC) with infinite intervals and complete Hilbert-style proof systems for them. The completeness results are a strong completeness theorem for the system of probabilistic ITL with respect to an abstract semantics and a relative completeness theorem for the system of probabilistic DC with respect to real-time semantics. The proposed systems subsume probabilistic real-time DC as known from the literature. A correspondence between the proposed systems and a system of probabilistic interval temporal logic with finite intervals and expanding modalities is established too.Comment: 43 page

    Syntactic Interpolation for Tense Logics and Bi-Intuitionistic Logic via Nested Sequents

    Get PDF
    We provide a direct method for proving Craig interpolation for a range of modal and intuitionistic logics, including those containing a "converse" modality. We demonstrate this method for classical tense logic, its extensions with path axioms, and for bi-intuitionistic logic. These logics do not have straightforward formalisations in the traditional Gentzen-style sequent calculus, but have all been shown to have cut-free nested sequent calculi. The proof of the interpolation theorem uses these calculi and is purely syntactic, without resorting to embeddings, semantic arguments, or interpreted connectives external to the underlying logical language. A novel feature of our proof includes an orthogonality condition for defining duality between interpolants

    Proceedings of the Joint Automated Reasoning Workshop and Deduktionstreffen: As part of the Vienna Summer of Logic ā€“ IJCAR 23-24 July 2014

    Get PDF
    Preface For many years the British and the German automated reasoning communities have successfully run independent series of workshops for anybody working in the area of automated reasoning. Although open to the general public they addressed in the past primarily the British and the German communities, respectively. At the occasion of the Vienna Summer of Logic the two series have a joint event in Vienna as an IJCAR workshop. In the spirit of the two series there will be only informal proceedings with abstracts of the works presented. These are collected in this document. We have tried to maintain the informal open atmosphere of the two series and have welcomed in particular research students to present their work. We have solicited for all work related to automated reasoning and its applications with a particular interest in work-in-progress and the presentation of half-baked ideas. As in the previous years, we have aimed to bring together researchers from all areas of automated reasoning in order to foster links among researchers from various disciplines; among theoreticians, implementers and users alike, and among international communities, this year not just the British and German communities

    Reasoning over Ontologies with Hidden Content: The Import-by-Query Approach

    Full text link
    There is currently a growing interest in techniques for hiding parts of the signature of an ontology Kh that is being reused by another ontology Kv. Towards this goal, in this paper we propose the import-by-query framework, which makes the content of Kh accessible through a limited query interface. If Kv reuses the symbols from Kh in a certain restricted way, one can reason over Kv U Kh by accessing only Kv and the query interface. We map out the landscape of the import-by-query problem. In particular, we outline the limitations of our framework and prove that certain restrictions on the expressivity of Kh and the way in which Kv reuses symbols from Kh are strictly necessary to enable reasoning in our setting. We also identify cases in which reasoning is possible and we present suitable import-by-query reasoning algorithms

    On Bisimulations for Description Logics

    Full text link
    We study bisimulations for useful description logics. The simplest among the considered logics is ALCreg\mathcal{ALC}_{reg} (a variant of PDL). The others extend that logic with inverse roles, nominals, quantified number restrictions, the universal role, and/or the concept constructor for expressing the local reflexivity of a role. They also allow role axioms. We give results about invariance of concepts, TBoxes and ABoxes, preservation of RBoxes and knowledge bases, and the Hennessy-Milner property w.r.t. bisimulations in the considered description logics. Using the invariance results we compare the expressiveness of the considered description logics w.r.t. concepts, TBoxes and ABoxes. Our results about separating the expressiveness of description logics are naturally extended to the case when instead of ALCreg\mathcal{ALC}_{reg} we have any sublogic of ALCreg\mathcal{ALC}_{reg} that extends ALC\mathcal{ALC}. We also provide results on the largest auto-bisimulations and quotient interpretations w.r.t. such equivalence relations. Such results are useful for minimizing interpretations and concept learning in description logics. To deal with minimizing interpretations for the case when the considered logic allows quantified number restrictions and/or the constructor for the local reflexivity of a role, we introduce a new notion called QS-interpretation, which is needed for obtaining expected results. By adapting Hopcroft's automaton minimization algorithm and the Paige-Tarjan algorithm, we give efficient algorithms for computing the partition corresponding to the largest auto-bisimulation of a finite interpretation.Comment: 42 page

    Disjunctive bases: normal forms and model theory for modal logics

    Get PDF
    We present the concept of a disjunctive basis as a generic framework for normal forms in modal logic based on coalgebra. Disjunctive bases were defined in previous work on completeness for modal fixpoint logics, where they played a central role in the proof of a generic completeness theorem for coalgebraic mu-calculi. Believing the concept has a much wider significance, here we investigate it more thoroughly in its own right. We show that the presence of a disjunctive basis at the "one-step" level entails a number of good properties for a coalgebraic mu-calculus, in particular, a simulation theorem showing that every alternating automaton can be transformed into an equivalent nondeterministic one. Based on this, we prove a Lyndon theorem for the full fixpoint logic, its fixpoint-free fragment and its one-step fragment, a Uniform Interpolation result, for both the full mu-calculus and its fixpoint-free fragment, and a Janin-Walukiewicz-style characterization theorem for the mu-calculus under slightly stronger assumptions. We also raise the questions, when a disjunctive basis exists, and how disjunctive bases are related to Moss' coalgebraic "nabla" modalities. Nabla formulas provide disjunctive bases for many coalgebraic modal logics, but there are cases where disjunctive bases give useful normal forms even when nabla formulas fail to do so, our prime example being graded modal logic. We also show that disjunctive bases are preserved by forming sums, products and compositions of coalgebraic modal logics, providing tools for modular construction of modal logics admitting disjunctive bases. Finally, we consider the problem of giving a category-theoretic formulation of disjunctive bases, and provide a partial solution
    • ā€¦
    corecore