362 research outputs found

    Comparative run-time performance of evolutionary algorithms on multi-objective interpolated continuous optimisation problems.

    Get PDF
    We propose a new class of multi-objective benchmark problems on which we analyse the performance of four well established multi-objective evolutionary algorithms (MOEAs) – each implementing a different search paradigm – by comparing run-time convergence behaviour over a set of 1200 problem instances. The new benchmarks are created by fusing previously proposed single-objective interpolated continuous optimisation problems (ICOPs) via a common set of Pareto non-dominated seeds. They thus inherit the ICOP property of having tunable fitness landscape features. The benchmarks are of intrinsic interest as they derive from interpolation methods and so can approximate general problem instances. This property is revealed to be of particular importance as our extensive set of numerical experiments indicates that choices pertaining to (i) the weighting of the inverse distance interpolation function and (ii) the problem dimension can be used to construct problems that are challenging to all tested multi-objective search paradigms. This in turn means that the new multi-objective ICOPs problems (MO-ICOPs) can be used to construct well-balanced benchmark sets that discriminate well between the run-time convergence behaviour of different solvers

    Limitations of benchmark sets and landscape features for algorithm selection and performance prediction.

    Get PDF
    Benchmark sets and landscape features are used to test algorithms and to train models to perform algorithm selection or configuration. These approaches are based on the assumption that algorithms have similar performances on problems with similar feature sets. In this paper, we test different configurations of differential evolution (DE) against the BBOB set. We then use the landscape features of those problems and a case base reasoning approach for DE configuration selection. We show that, although this method obtains good results for BBOB problems, it fails to select the best configurations when facing a new set of optimisation problems with a distinct array of landscape features. This demonstrates the limitations of the BBOB set for algorithm selection. Moreover, by examination of the relationship between features and algorithm performance, we show that there is no correlation between the feature space and the performance space. We conclude by identifying some important open questions raised by this work

    Investigating benchmark correlations when comparing algorithms with parameter tuning: detailed experiments and results.

    Get PDF
    Benchmarks are important to demonstrate the utility of optimisation algorithms, but there is controversy about the practice of benchmarking; we could select instances that present our algorithm favourably, and dismiss those on which our algorithm underperforms. Several papers highlight the pitfalls concerned with benchmarking, some of which concern the context of the automated design of algorithms, where we use a set of problem instances (benchmarks) to train our algorithm. As with machine learning, if the training set does not reflect the test set, the algorithm will not generalize. This raises some open questions concerning the use of test instances to automatically design algorithms. We use differential evolution and sweep the parameter settings to investigate the practice of benchmarking using the BBOB benchmarks. We make three key findings. Firstly, several benchmark functions are highly correlated. This may lead to the false conclusion that an algorithm performs well in general, when it performs poorly on a few key instances, possibly introducing unwanted bias to a resulting automatically designed algorithm. Secondly, the number of evaluations can have a large effect on the conclusion. Finally, a systematic sweep of the parameters shows how performance varies with time across the space of algorithm configurations. The datasets, including all computed features, the evolved policies and their performances, and the visualisations for all feature sets are available from the University of Stirling Data Repository (http://hdl.handle.net/11667/109)

    Investigating benchmark correlations when comparing algorithms with parameter tuning.

    Get PDF
    Benchmarks are important for comparing performance of optimisation algorithms, but we can select instances that present our algorithm favourably, and dismiss those on which our algorithm under-performs. Also related are automated design of algorithms, which use problem instances (benchmarks) to train an algorithm: careful choice of instances is needed for the algorithm to generalise. We sweep parameter settings of differential evolution to applied to the BBOB benchmarks. Several benchmark functions are highly correlated. This may lead to the false conclusion that an algorithm performs well in general, when it performs poorly on a few key instances. These correlations vary with the number of evaluations

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing

    Decomposition of unstructured meshes for efficient parallel computation

    Get PDF

    Surveying the Energy Landscapes of Multistable Elastic Structures

    Get PDF
    Energy landscapes analysis is a versatile approach to study multistable systems by identifying the network of stable states and reconfiguration pathways. Thus far, it has primarily been used in microscale systems, such as studying chemical reaction rates and to characterise the behaviour of how protein fold. Here, however, we aim to utilise energy landscape techniques to study multistable elastic structures, in particular, complex 3D structures that have been buckled from 2D patterns, which are of interest for applications such as flexible electronics and microelectromechanical systems. To this end we have developed new energy landscape methods and software that are well suited to continuous, macroscale systems with many degrees of freedom. The first is the binary image transition state search method (BITSS), which offers greater efficiency for large scale systems compared to traditional transition state search methods, and it is well suited to complex, non-linear pathways. Next, a new software library is introduced that contains a variety of energy landscape methods and potentials which are parallelised to study large-scale continuous systems. This library can be flexibly used for any chosen application, and has been designed to be easily extensible for new methods and potentials. Furthermore, we exploit energy landscape analysis to tailor the stable states and reconfiguration paths of various reconfigurable buckled mesostructures. We establish stability phase diagrams and identify the corresponding available reconfiguration pathways by varying essential structural parameters. Furthermore, we identify how the introduction of creases affects the multistability of the structures, finding that a small number can increase the number of distinct states, but more creases can lead to a loss of multistability. Taken together, these results and methodology can be used to influence the design of new structures for a variety of different applications

    Exploring Deep Learning for deformative operators in vector-based cartographic road generalization

    Full text link
    Cartographic generalisation is the process by which geographical data is simplified and abstracted to increase the legibility of maps at reduced scales. As map scales decrease, irrelevant map features are removed (selective generalisation), and relevant map features are deformed, eliminating unnec- essary details while preserving the general shapes (deformative generalisation). The automation of cartographic generalisation has been a tough nut to crack for years because it is governed not only by explicit rules but also by a large body of implicit cartographic knowledge that conven- tional automation approaches struggle to acquire and formalise. In recent years, the introduction of Deep Learning (DL) and its inductive capabilities has raised hope for further progress. This thesis explores the potential of three Deep Learning architectures — Graph Convolutional Neural Network (GCNN), Auto Encoder, and Recurrent Neural Network (RNN) — in their application on the deformative generalisation of roads using a vector-based approach. The generated small- scale representations of the input roads differ substantially across the architectures, not only in their included frequency spectra but also in their ability to apply certain generalisation operators. However, the most apparent learnt and applied generalisation operator by all architectures is the smoothing of the large-scale roads. The outcome of this thesis has been encouraging but suggests to pursue further research about the effect of the pre-processing of the input geometries and the inclusion of spatial context and the combination of map features (e.g. buildings) to better capture the implicit knowledge engrained in the products of mapping agencies used for training the DL models

    New methods for the calibration of optical resonators : integrated calibration by means of optical modulation (ICOM) and narrow-band cavity ring-down (NB-CRD)

    Get PDF
    Optical resonators are used in spectroscopic measurements of atmospheric trace gases to establish long optical path lengths L with enhanced absorption in compact in-struments. In cavity-enhanced broad-band methods, the ex-act knowledge of both the magnitude of L and its spectral dependency on the wavelength lambda is fundamental for the correct retrieval of trace gas concentrations. L(lambda) is connected to the spectral mirror reflectivity R (lambda), which is often referred to instead. L(lambda) is also influenced by other quantities like broad-band absorbers or alignment of the optical resonator. The established calibration techniques to determine L(lambda), e.g. introducing gases with known optical properties or measuring the ring-down time, all have limitations: limited spectral resolution, insufficient absolute accuracy and precision, inconvenience for field deployment, or high cost of implementation. Here, we present two new methods that aim to overcome these limitations: (1) the narrow-band cavity ring-down (NB-CRD) method uses cavity ring-down spectroscopy and a tunable filter to retrieve spectrally resolved path lengths L(lambda); (2) integrated calibration by means of op-tical modulation (ICOM) allows the determination of the op-tical path length at the spectrometer resolution with high ac-curacy in a relatively simple setup. In a prototype setup we demonstrate the high accuracy and precision of the new approaches. The methods facilitate and improve the determination of L(lambda), thereby simplifying the use of cavity-enhanced absorption spectroscopy.Peer reviewe

    Optically gated beating-heart imaging

    Get PDF
    The constant motion of the beating heart presents an obstacle to clear optical imaging, especially 3D imaging, in small animals where direct optical imaging would otherwise be possible. Gating techniques exploit the periodic motion of the heart to computationally "freeze" this movement and overcome motion artefacts. Optically gated imaging represents a recent development of this, where image analysis is used to synchronize acquisition with the heartbeat in a completely non-invasive manner. This article will explain the concept of optical gating, discuss a range of different implementation strategies and their strengths and weaknesses. Finally we will illustrate the usefulness of the technique by discussing applications where optical gating has facilitated novel biological findings by allowing 3D in vivo imaging of cardiac myocytes in their natural environment of the beating heart
    • 

    corecore