672 research outputs found

    GATEKEEPER’s Strategy for the Multinational Large-Scale Piloting of an eHealth Platform: Tutorial on How to Identify Relevant Settings and Use Cases

    Get PDF
    Background: The World Health Organization’s strategy toward healthy aging fosters person-centered integrated care sustained by eHealth systems. However, there is a need for standardized frameworks or platforms accommodating and interconnecting multiple of these systems while ensuring secure, relevant, fair, trust-based data sharing and use. The H2020 project GATEKEEPER aims to implement and test an open-source, European, standard-based, interoperable, and secure framework serving broad populations of aging citizens with heterogeneous health needs. Objective: We aim to describe the rationale for the selection of an optimal group of settings for the multinational large-scale piloting of the GATEKEEPER platform. Methods: The selection of implementation sites and reference use cases (RUCs) was based on the adoption of a double stratification pyramid reflecting the overall health of target populations and the intensity of proposed interventions; the identification of a principles guiding implementation site selection; and the elaboration of guidelines for RUC selection, ensuring clinical relevance and scientific excellence while covering the whole spectrum of citizen complexities and intervention intensities. Results: Seven European countries were selected, covering Europe’s geographical and socioeconomic heterogeneity: Cyprus, Germany, Greece, Italy, Poland, Spain, and the United Kingdom. These were complemented by the following 3 Asian pilots: Hong Kong, Singapore, and Taiwan. Implementation sites consisted of local ecosystems, including health care organizations and partners from industry, civil society, academia, and government, prioritizing the highly rated European Innovation Partnership on Active and Healthy Aging reference sites. RUCs covered the whole spectrum of chronic diseases, citizen complexities, and intervention intensities while privileging clinical relevance and scientific rigor. These included lifestyle-related early detection and interventions, using artificial intelligence–based digital coaches to promote healthy lifestyle and delay the onset or worsening of chronic diseases in healthy citizens; chronic obstructive pulmonary disease and heart failure decompensations management, proposing integrated care management based on advanced wearable monitoring and machine learning (ML) to predict decompensations; management of glycemic status in diabetes mellitus, based on beat to beat monitoring and short-term ML-based prediction of glycemic dynamics; treatment decision support systems for Parkinson disease, continuously monitoring motor and nonmotor complications to trigger enhanced treatment strategies; primary and secondary stroke prevention, using a coaching app and educational simulations with virtual and augmented reality; management of multimorbid older patients or patients with cancer, exploring novel chronic care models based on digital coaching, and advanced monitoring and ML; high blood pressure management, with ML-based predictions based on different intensities of monitoring through self-managed apps; and COVID-19 management, with integrated management tools limiting physical contact among actors. Conclusions: This paper provides a methodology for selecting adequate settings for the large-scale piloting of eHealth frameworks and exemplifies with the decisions taken in GATEKEEPER the current views of the WHO and European Commission while moving forward toward a European Data Space

    A Proof-of-Concept IoT System for Remote Healthcare Based on Interoperability Standards

    Full text link
    [EN] The Internet of Things paradigm in healthcare has boosted the design of new solutions for the promotion of healthy lifestyles and the remote care. Thanks to the effort of academia and industry, there is a wide variety of platforms, systems and commercial products enabling the real-time information exchange of environmental data and people's health status. However, one of the problems of these type of prototypes and solutions is the lack of interoperability and the compromised scalability in large scenarios, which limits its potential to be deployed in real cases of application. In this paper, we propose a health monitoring system based on the integration of rapid prototyping hardware and interoperable software to build system capable of transmitting biomedical data to healthcare professionals. The proposed system involves Internet of Things technologies and interoperablility standards for health information exchange such as the Fast Healthcare Interoperability Resources and a reference framework architecture for Ambient Assisted Living UniversAAL.This research received no external funding. The APC was funded by Research group Information and Communication Technologies against Climate Change (!CTCC) of the Universitat Politecnica de Valencia, Spain.Lemus Zúñiga, LG.; Félix, JM.; Fides Valero, Á.; Benlloch-Dualde, J.; Martinez-Millana, A. (2022). A Proof-of-Concept IoT System for Remote Healthcare Based on Interoperability Standards. Sensors. 22(4):1-17. https://doi.org/10.3390/s2204164611722

    Towards fog-driven IoT eHealth:Promises and challenges of IoT in medicine and healthcare

    Get PDF
    Internet of Things (IoT) offers a seamless platform to connect people and objects to one another for enriching and making our lives easier. This vision carries us from compute-based centralized schemes to a more distributed environment offering a vast amount of applications such as smart wearables, smart home, smart mobility, and smart cities. In this paper we discuss applicability of IoT in healthcare and medicine by presenting a holistic architecture of IoT eHealth ecosystem. Healthcare is becoming increasingly difficult to manage due to insufficient and less effective healthcare services to meet the increasing demands of rising aging population with chronic diseases. We propose that this requires a transition from the clinic-centric treatment to patient-centric healthcare where each agent such as hospital, patient, and services are seamlessly connected to each other. This patient-centric IoT eHealth ecosystem needs a multi-layer architecture: (1) device, (2) fog computing and (3) cloud to empower handling of complex data in terms of its variety, speed, and latency. This fog-driven IoT architecture is followed by various case examples of services and applications that are implemented on those layers. Those examples range from mobile health, assisted living, e-medicine, implants, early warning systems, to population monitoring in smart cities. We then finally address the challenges of IoT eHealth such as data management, scalability, regulations, interoperability, device–network–human interfaces, security, and privacy

    Healthcare digitalization and pay-for-performance incentives in smart hospital project financing

    Get PDF
    This study aims to explore the impact of healthcare digitalization on smart hospital project financing (PF) fostered by pay-for-performance (P4P) incentives. Digital platforms are a technology-enabled business model that facilitates exchanges between interacting agents. They represent a bridging link among disconnected nodes, improving the scalable value of networks. Application to healthcare public-private partnerships (PPPs) is significant due to the consistency of digital platforms with health issues and the complexity of the stakeholder’s interaction. In infrastructural PPPs, public and private players cooperate, usually following PF patterns. This relationship is complemented by digitized supply chains and is increasingly patient-centric. This paper reviews the literature, analyzes some supply chain bottlenecks, addresses solutions concerning the networking effects of platforms to improve PPP interactions, and investigates the cost-benefit analysis of digital health with an empirical case. Whereas diagnostic or infrastructural technology is an expensive investment with long-term payback, leapfrogging digital applications reduce contingent costs. “Digital” savings can be shared by key stakeholders with P4P schemes, incentivizing value co-creation patterns. Efficient sharing may apply network theory to a comprehensive PPP ecosystem where stakeholding nodes are digitally connected. This innovative approach improves stakeholder relationships, which are re-engineered around digital platforms that enhance patient-centered satisfaction and sustainability. Digital technologies are useful even for infectious disease surveillance, like that of the coronavirus pandemic, for supporting massive healthcare intervention, decongesting hospitals, and providing timely big data

    Cooperative Human-Centric Sensing Connectivity

    Get PDF
    Human-centric sensing (HCS) is a new concept relevant to Internet of Things (IoT). HCS connectivity, referred to as “smart connectivity,” enables applications that are highly personalized and often time-critical. In a typical HCS scenario, there may be many hundreds of sensor stream connections, centered around the human, who would be the determining factor for the number, the purpose, the direction, and the frequency of the sensor streams. This chapter examines the concepts of HCS communications, outlines the challenges, and defines a roadmap for solutions for realizing HCS networks. This chapter is organized as follows. Section 1 introduces the concept of cooperation in information and communications technologies (ICT), and in the context of IoT. Section 2 discusses cooperation in the context of the personal and extra-personal user space and identifies the remaining open challenges and requirements for realizing the benefits of this approach to enabling more resources and services in a hyper-connected society. Section 3 defines a roadmap toward realizing simple, efficient, and trustable systems based on advanced technologies combining security, cloud, and IoT/big data technologies and outlines the challenges related to this vision. Section 4 concludes the chapter

    An architecture for providing personalized digital health

    Get PDF
    Patients need mechanisms to integrate health information coming from different sources, including personal devices. This would lead to Personalized Digital Health (PDH). HIPAMS (Health Information Protection And Management System) is a modular and interoperable secure architecture that helps in achieving this objective and building a Framework for PDH. The paper presents HIPAMS and how it supports PDH.The work presented in this paper has been partially supported by the Spanish Government under the project GenClinLab-Sec (Mechanisms for secure and efficient management of genomic information tailored to clinical laboratories: Security Aspects, PID2020-114394RB-C31) funded by MCIN/AEI/10.13039/501100011033 and by the Generalitat de Catalunya (2017 SGR 1749).Peer ReviewedObjectius de Desenvolupament Sostenible::3 - Salut i BenestarPostprint (published version

    Med-e-Tel 2017

    Get PDF

    A 5G-based eHealth monitoring and emergency response system: experience and lessons learned

    Get PDF
    5G is being deployed in major cities across the globe. Although the benefits brought by the new 5G air interface will be numerous, 5G is more than just an evolution of radio technology. New concepts, such as the application of network softwarization and programmability paradigms to the overall network design, the reduced latency promised by edge computing, or the concept of network slicing – just to cite some of them – will open the door to new vertical-specific services, even capable of saving more lives. This article discusses the implementation and validation of an eHealth service specially tailored for the Emergency Services of the Madrid Municipality. This new vertical application makes use of the novel characteristics of 5G, enabling dynamic instantiation of services at the edge, a federation of domains and execution of real on-the-field augmented reality. The article provides an explanation of the design of the use case and its real-life implementation and demonstration in collaboration with the Madrid emergency response team. The major outcome of this work is a real-life proof-of-concept of this system, which can reduce the time required to respond to an emergency in minutes and perform more efficient triage, increasing the chances of saving lives.This work was supported in part by the EU H2020 5GROWTH Project under Grant 856709, in part by Madrid Government (Comunidad de Madrid-Spain) through the Multiannual Agreement with University Carlos III of Madrid UC3M in the line of Excellence of University Professors under Grant EPUC3M21, and in part by the Regional Program of Research and Technological Innovation (V PRICIT)
    corecore