573 research outputs found

    Setting the basis of best practices and standards for curation and annotation of logical models in biology

    Get PDF
    International audienceThe fast accumulation of biological data calls for their integration, analysis and exploitation through more systematic approaches. The generation of novel, relevant hypotheses from this enormous quantity of data remains challenging. Logical models have long been used to answer a variety of questions regarding the dynamical behaviours of regulatory networks. As the number of published logical models increases, there is a pressing need for systematic model annotation, referencing and curation in community-supported and standardised formats. This article summarises the key topics and future directions of a meeting entitled ‘Annotation and curation of computational models in biology’, organised as part of the 2019 [BC]2 conference. The purpose of the meeting was to develop and drive forward a plan towards the standardised annotation of logical models, review and connect various ongoing projects of experts from different communities involved in the modelling and annotation of molecular biological entities, interactions, pathways and models. This article defines a roadmap towards the annotation and curation of logical models, including milestones for best practices and minimum standard requirements

    A Requirements Framework for the Design of Smart City Reference Architectures

    Get PDF
    Reference architectures are generalized models of several end systems that share one or more common domains. They facilitate the design of high-quality concrete architectures and the communication between domain professionals. The reference architecture approach should be applied in the smart city domain because of its complexity where different stakeholders and heterogeneous systems and technologies must coexist and interact. Smart cities reference architectures should offer a cooperative framework for stakeholders and a guide to design concrete architectures. Industry and academia have proposed different requirements for concrete architectures. However, there is a lack of standardization in the requirements for the design of smart city reference architectures. This can produce that concrete architectures do not meet citizens’ requirements. The goal of this paper is to define a set of requirements for the design of smart city reference architectures. We conduct a literature review to find the requirements which should fulfil these reference architectures

    Logical Gene Ontology Annotations (GOAL): exploring gene ontology annotations with OWL

    Get PDF
    MOTIVATION: Ontologies such as the Gene Ontology (GO) and their use in annotations make cross species comparisons of genes possible, along with a wide range of other analytical activities. The bio-ontologies community, in particular the Open Biomedical Ontologies (OBO) community, have provided many other ontologies and an increasingly large volume of annotations of gene products that can be exploited in query and analysis. As many annotations with different ontologies centre upon gene products, there is a possibility to explore gene products through multiple ontological perspectives at the same time. Questions could be asked that link a gene product’s function, process, cellular location, phenotype and disease. Current tools, such as AmiGO, allow exploration of genes based on their GO annotations, but not through multiple ontological perspectives. In addition, the semantics of these ontology’s representations should be able to, through automated reasoning, afford richer query opportunities of the gene product annotations than is currently possible. RESULTS: To do this multi-perspective, richer querying of gene product annotations, we have created the Logical Gene Ontology, or GOAL ontology, in OWL that combines the Gene Ontology, Human Disease Ontology and the Mammalian Phenotype Ontology, together with classes that represent the annotations with these ontologies for mouse gene products. Each mouse gene product is represented as a class, with the appropriate relationships to the GO aspects, phenotype and disease with which it has been annotated. We then use defined classes to query these protein classes through automated reasoning, and to build a complex hierarchy of gene products. We have presented this through a Web interface that allows arbitrary queries to be constructed and the results displayed. CONCLUSION: This standard use of OWL affords a rich interaction with Gene Ontology, Human Disease Ontology and Mammalian Phenotype Ontology annotations for the mouse, to give a fine partitioning of the gene products in the GOAL ontology. OWL in combination with automated reasoning can be effectively used to query across ontologies to ask biologically rich questions. We have demonstrated that automated reasoning can be used to deliver practical on-line querying support for the ontology annotations available for the mouse. AVAILABILITY: The GOAL Web page is to be found at http://owl.cs.manchester.ac.uk/goal

    RGMQL: scalable and interoperable computing of heterogeneous omics big data and metadata in R/Bioconductor

    Get PDF
    Heterogeneous omics data, increasingly collected through high-throughput technologies, can contain hidden answers to very important and still unsolved biomedical questions. Their integration and processing are crucial mostly for tertiary analysis of Next Generation Sequencing data, although suitable big data strategies still address mainly primary and secondary analysis. Hence, there is a pressing need for algorithms specifically designed to explore big omics datasets, capable of ensuring scalability and interoperability, possibly relying on high-performance computing infrastructures

    The cellular microscopy phenotype ontology

    Get PDF
    BACKGROUND: Phenotypic data derived from high content screening is currently annotated using free-text, thus preventing the integration of independent datasets, including those generated in different biological domains, such as cell lines, mouse and human tissues. DESCRIPTION: We present the Cellular Microscopy Phenotype Ontology (CMPO), a species neutral ontology for describing phenotypic observations relating to the whole cell, cellular components, cellular processes and cell populations. CMPO is compatible with related ontology efforts, allowing for future cross-species integration of phenotypic data. CMPO was developed following a curator-driven approach where phenotype data were annotated by expert biologists following the Entity-Quality (EQ) pattern. These EQs were subsequently transformed into new CMPO terms following an established post composition process. CONCLUSION: CMPO is currently being utilized to annotate phenotypes associated with high content screening datasets stored in several image repositories including the Image Data Repository (IDR), MitoSys project database and the Cellular Phenotype Database to facilitate data browsing and discoverability
    corecore