10,502 research outputs found

    Pathways: Augmenting interoperability across scholarly repositories

    Full text link
    In the emerging eScience environment, repositories of papers, datasets, software, etc., should be the foundation of a global and natively-digital scholarly communications system. The current infrastructure falls far short of this goal. Cross-repository interoperability must be augmented to support the many workflows and value-chains involved in scholarly communication. This will not be achieved through the promotion of single repository architecture or content representation, but instead requires an interoperability framework to connect the many heterogeneous systems that will exist. We present a simple data model and service architecture that augments repository interoperability to enable scholarly value-chains to be implemented. We describe an experiment that demonstrates how the proposed infrastructure can be deployed to implement the workflow involved in the creation of an overlay journal over several different repository systems (Fedora, aDORe, DSpace and arXiv).Comment: 18 pages. Accepted for International Journal on Digital Libraries special issue on Digital Libraries and eScienc

    The CIARD RING, an infrastructure for interoperability of agricultural research information services

    Get PDF
    Creating integrated information services in agriculture giving access and adding value to information residing in distributed sources remains a major challenge. In distributed architectures, value added services by definition interface several information sources / services. Therefore value added services cannot be built without an awareness of what others have done: which sources are available, how to tap into them, how to exploit their semantics. The Coherence in Information for Agricultural Research for Development (CIARD) Routemap to Information Nodes and Gateways (RING) is a portal offering an interlinked registry of existing information services in agriculture. The CIARD RING covers both information services and sources: in nowadays information architectures, the distinction between the two is very fluid. In the RING, the definition of "service" includes any form of providing information from one server instance (website, mail server, web services, XML archive...) to many clients (browsers, email clients, news readers, harvesters...) The services registered in the RING are described in details and categorized according to criteria that are relevant to the use of the service and its interoperability. The RING categorizes and interlinks the featured services according to criteria such as: standards adopted, vocabulary used, technology used, protocols implemented, level of interoperability etc. In addition, it features detailed instructions on how the registered services can be "interoperated". The vision is that the RING will become the common global technical platform for the community of agricultural information professionals for accessing, sharing and exchanging information through web services. This paper describes how the RING provides an infrastructure for enhancing interoperability of information sources and thus paves the way towards better accessibility of information through value-added and better targeted services

    Proposal for an IMLS Collection Registry and Metadata Repository

    Get PDF
    The University of Illinois at Urbana-Champaign proposes to design, implement, and research a collection-level registry and item-level metadata repository service that will aggregate information about digital collections and items of digital content created using funds from Institute of Museum and Library Services (IMLS) National Leadership Grants. This work will be a collaboration by the University Library and the Graduate School of Library and Information Science. All extant digital collections initiated or augmented under IMLS aegis from 1998 through September 30, 2005 will be included in the proposed collection registry. Item-level metadata will be harvested from collections making such content available using the Open Archives Initiative Protocol for Metadata Harvesting (OAI PMH). As part of this work, project personnel, in cooperation with IMLS staff and grantees, will define and document appropriate metadata schemas, help create and maintain collection-level metadata records, assist in implementing OAI compliant metadata provider services for dissemination of item-level metadata records, and research potential benefits and issues associated with these activities. The immediate outcomes of this work will be the practical demonstration of technologies that have the potential to enhance the visibility of IMLS funded online exhibits and digital library collections and improve discoverability of items contained in these resources. Experience gained and research conducted during this project will make clearer both the costs and the potential benefits associated with such services. Metadata provider and harvesting service implementations will be appropriately instrumented (e.g., customized anonymous transaction logs, online questionnaires for targeted user groups, performance monitors). At the conclusion of this project we will submit a final report that discusses tasks performed and lessons learned, presents business plans for sustaining registry and repository services, enumerates and summarizes potential benefits of these services, and makes recommendations regarding future implementations of these and related intermediary and end user interoperability services by IMLS projects.unpublishednot peer reviewe

    The Semantic Automated Discovery and Integration (SADI) Web service Design-Pattern, API and Reference Implementation

    Get PDF
    Background. 
The complexity and inter-related nature of biological data poses a difficult challenge for data and tool integration. There has been a proliferation of interoperability standards and projects over the past decade, none of which has been widely adopted by the bioinformatics community. Recent attempts have focused on the use of semantics to assist integration, and Semantic Web technologies are being welcomed by this community.

Description. 
SADI – Semantic Automated Discovery and Integration – is a lightweight set of fully standards-compliant Semantic Web service design patterns that simplify the publication of services of the type commonly found in bioinformatics and other scientific domains. Using Semantic Web technologies at every level of the Web services “stack”, SADI services consume and produce instances of OWL Classes following a small number of very straightforward best-practices. In addition, we provide codebases that support these best-practices, and plug-in tools to popular developer and client software that dramatically simplify deployment of services by providers, and the discovery and utilization of those services by their consumers.

Conclusions.
SADI Services are fully compliant with, and utilize only foundational Web standards; are simple to create and maintain for service providers; and can be discovered and utilized in a very intuitive way by biologist end-users. In addition, the SADI design patterns significantly improve the ability of software to automatically discover appropriate services based on user-needs, and automatically chain these into complex analytical workflows. We show that, when resources are exposed through SADI, data compliant with a given ontological model can be automatically gathered, or generated, from these distributed, non-coordinating resources - a behavior we have not observed in any other Semantic system. Finally, we show that, using SADI, data dynamically generated from Web services can be explored in a manner very similar to data housed in static triple-stores, thus facilitating the intersection of Web services and Semantic Web technologies

    Building a Disciplinary, World-Wide Data Infrastructure

    Full text link
    Sharing scientific data, with the objective of making it fully discoverable, accessible, assessable, intelligible, usable, and interoperable, requires work at the disciplinary level to define in particular how the data should be formatted and described. Each discipline has its own organization and history as a starting point, and this paper explores the way a range of disciplines, namely materials science, crystallography, astronomy, earth sciences, humanities and linguistics get organized at the international level to tackle this question. In each case, the disciplinary culture with respect to data sharing, science drivers, organization and lessons learnt are briefly described, as well as the elements of the specific data infrastructure which are or could be shared with others. Commonalities and differences are assessed. Common key elements for success are identified: data sharing should be science driven; defining the disciplinary part of the interdisciplinary standards is mandatory but challenging; sharing of applications should accompany data sharing. Incentives such as journal and funding agency requirements are also similar. For all, it also appears that social aspects are more challenging than technological ones. Governance is more diverse, and linked to the discipline organization. CODATA, the RDA and the WDS can facilitate the establishment of disciplinary interoperability frameworks. Being problem-driven is also a key factor of success for building bridges to enable interdisciplinary research.Comment: Proceedings of the session "Building a disciplinary, world-wide data infrastructure" of SciDataCon 2016, held in Denver, CO, USA, 12-14 September 2016, to be published in ICSU CODATA Data Science Journal in 201

    Supporting Semantically Enhanced Web Service Discovery for Enterprise Application Integration

    Get PDF
    The availability of sophisticated Web service discovery mechanisms is an essential prerequisite for increasing the levels of efficiency and automation in EAI. In this chapter, we present an approach for developing service registries building on the UDDI standard and offering semantically-enhanced publication and discovery capabilities in order to overcome some of the known limitations of conventional service registries. The approach aspires to promote efficiency in EAI in a number of ways, but primarily by automating the task of evaluating service integrability on the basis of the input and output messages that are defined in the Web service’s interface. The presented solution combines the use of three technology standards to meet its objectives: OWL-DL, for modelling service characteristics and performing fine-grained service matchmaking via DL reasoning, SAWSDL, for creating semantically annotated descriptions of service interfaces, and UDDI, for storing and retrieving syntactic and semantic information about services and service providers

    The Distributed Ontology Language (DOL): Use Cases, Syntax, and Extensibility

    Full text link
    The Distributed Ontology Language (DOL) is currently being standardized within the OntoIOp (Ontology Integration and Interoperability) activity of ISO/TC 37/SC 3. It aims at providing a unified framework for (1) ontologies formalized in heterogeneous logics, (2) modular ontologies, (3) links between ontologies, and (4) annotation of ontologies. This paper presents the current state of DOL's standardization. It focuses on use cases where distributed ontologies enable interoperability and reusability. We demonstrate relevant features of the DOL syntax and semantics and explain how these integrate into existing knowledge engineering environments.Comment: Terminology and Knowledge Engineering Conference (TKE) 2012-06-20 to 2012-06-21 Madrid, Spai

    Search Interoperability, OAI, and Metadata: Handout for METRO Workshop

    Get PDF
    Handout for the workshop on the OAI Protocol for Metadata Harvesting given for METRO on December 8, 2006
    • …
    corecore