331 research outputs found

    Understanding Household Preferences For Alternative-Fuel Vehicle Technologies

    Get PDF
    This report explores consumer preferences among four different alternative-fuel vehicles (AFVs): hybrid electric vehicles (HEVs), compressed natural gas (CNG) vehicles, hydrogen fuel cell (HFC) vehicles, and electric vehicles (EVs). Although researchers have been interested in understanding consumer preferences for AFVs for more than three decades, it is important to update our estimates of the trade-offs people are willing to make between cost, environmental performance, vehicle range, and refuel¬ing convenience. We conducted a nationwide, Internet-based survey to assess consumer preferences for AFVs. Respondents participated in a stated-preference ranking exercise in which they ranked a series of five vehicles (four AFVs and a traditional gasoline-fueled vehicle) that differ primarily in fuel type, price, environmental performance, vehicle range, and refueling conve¬nience. Our findings indicate that, in general, gasoline-fueled vehicles are still preferred over AFVs, however there is a strong interest in AFVs. No AFV type is overwhelmingly preferred, although HEVs seem to have an edge. Using a panel rank-ordered mixed logit model, we assessed the trade-offs people make between key AFV characteristics. We found that, in order to leave a person’s utility unchanged, a 1,000increaseinAFVcostneedstobecompensatedbyeither:(1)a1,000 increase in AFV cost needs to be compensated by either: (1) a 300 savings in driving cost over 12,000 miles; (2) a 17.5 mile increase in vehicle range; or (3) a 7.8-minute decrease in total refueling time (e.g. finding a gas station and refueling)

    The Application of Ant Colony Optimization

    Get PDF
    The application of advanced analytics in science and technology is rapidly expanding, and developing optimization technics is critical to this expansion. Instead of relying on dated procedures, researchers can reap greater rewards by utilizing cutting-edge optimization techniques like population-based metaheuristic models, which can quickly generate a solution with acceptable quality. Ant Colony Optimization (ACO) is one the most critical and widely used models among heuristics and meta-heuristics. This book discusses ACO applications in Hybrid Electric Vehicles (HEVs), multi-robot systems, wireless multi-hop networks, and preventive, predictive maintenance

    Geographically distributed real-time co-simulation of electric vehicle

    Get PDF
    The present paper shows the capabilities of a distributed real-time co-simulation environment merging simulation models and testing facilities for developing and verifying electric vehicles. This environment has been developed in the framework of the XILforEV project and the presented case is focused on a ride control with a real suspension installed on a test bench in Spain, which uses real-time information from a complete vehicle model in Germany. Given the long distance between both sites, it has been necessary to develop a specific delay compensation algorithm. This algorithm is general enough to be used in other real-time co-simulation frameworks. In the present work, the system architecture including the communication compensation is described and successfully experimentally validated

    Testialustan suunnittelu hybridiajoneuvojen hardware-in-the-loop simulaatioihin

    Get PDF
    Recent changes to vehicle type-approval regulations have increased demand for testing methods, which better represent real-world driving conditions. Hardware-in-the-Loop (HIL) simulation is seen as an attractive alternative for pure simulations and real-world operation measurements. The goal of this work was to provide a functional testbed for engine testing, as well as for HIL simulations of Hybrid Electric Vehicles (HEVs). In addition, a state-of-the-art review of HIL was considered an important goal of the work. The theory behind HIL, and real-time systems in general, is depicted using a wide variety of examples from automotive applications relating to hybrid power sources. The knowledge gained from the literature was used to design and build a testbed in a form of an engine dynamometer. The testbed can be used to emulate rotational forces, such as load torques on a driveshaft. The testbed’s fast hardware connections enable real-time testing. The scope of the design was in mechanical design and in specification of the hardware components. Initial Internal Combustion Engine (ICE) steady-state and transient tests were done to partially validate the testbed. However, the performance was assessed to not be at an acceptable level. For example, only speed tracking passed the non-road transient cycle tracking assessment. Torque tracking and the derived power curves failed the assessment narrowly. However, the test results indicate that with proper tuning of the control software, the system performance should get better. The system response was slow at this point, but the transient behavior itself was fast. Also, in steady-state, torque and speed ripple were low. Only the preparations for HIL simulation were carried out, since the testbed was not validated to be functional enough for the much more demanding HIL tests. The preparations involved building a simulation model of a series-parallel hybrid Refuse-Collecting Vehicle (RCV), which is to be used for the verification of the designed system’s HIL capabilities. The model was independently verified to be suitable to be used for the physical tests.Viimeaikaiset muutokset ajoneuvojen tyyppihyväksyntään ovat lisänneet tarvetta testausmetodeille, jotka paremmin vastaavat oikean elämän ajo-olosuhteita. HIL-simulaatio nähdään houkuttelevana vaihtoehtona pelkälle simulaatiolle sekä ajoneuvon ajonaikaisille mittauksille. Tämän työn tavoitteena on tarjota toimiva testilaite moottoridynamometritestaukseen sekä hybridiajoneuvojen HIL-simulaatioihin. Lisäksi, HIL:in nykytilanteen kuvausta pidettiin tärkeänä työn tavoitteena. HIL:in, ja yleisemmin reaaliaikaisen testauksen, tausta ja teoria selvitettiin laaja alaisesti käyttäen esimerkkejä hybridivoimanlähteisiin liittyvistä ajoneuvoalan käyttökohteista. Kirjallisuutta hyödyntäen, testipenkki suunniteltiin ja rakennettiin. Testipenkkiä voidaan käyttää emuloimaan pyöriviä voimia, kuten vetoakseliin kohdistuvia vääntöjä. Testipenkin nopeat yhteydet mahdollistavat reaaliaikaisen testauksen. Suunnittelu oli rajattu pääasiassa mekaaniseen suunnitteluun ja komponenttien määrittelyyn. Sähkö- ja ohjelmistosuunnittelu määriteltiin yleisellä tasolla. Alustavat polttomoottorilla tehdyt vakaiden ajopisteiden ja transienttiajojen testit toteutettiin testipenkin osittaiseksi validoinniksi. Kuitenkin, laitteen suorituskyky ei yltänyt halutulle tasolle. Esimerkiksi, ainoastaan nopeusseuranta läpäisi transienttiajo testin, mutta vääntö- ja voimaseurannat epäonnistuivat täpärästi. Tulokset kuitenkin osoittavat luottamusta siitä että testipenkki saadaan aikanaan halutulle tasolle ohjelmistopuolen kontrollereja säätämällä. Tällä hetkellä systeemin vasteaika on liian pitkä, vaikka muuten dynamiikka on nopeaa. Lisäksi, vakaissa ajopisteissä vääntö- ja nopeushuojunta ovat alhaisia. Ainoastaan valmistelut HIL-simulaatiota varten saatiin toteutettua, sillä testipenkkiä ei saatu reaaliaikasta testausta vaativalle tasolle. Valmistelut sisälsivät hybridijäteauton simulaatiomallin rakentamisen, jota tullaan aikanaan käyttämään testipenkin HIL toimivuuden validointiin. Simulaatiomalli varmistettiin itsenäisenä toimivaksi, ja siten soveltuvaksi tuleviin fyysisiin testiajoihin

    Connected and shared X-in-the-loop technologies for electric vehicle design

    Get PDF
    The presented paper introduces a new methodology of experimental testing procedures required by the complex systems of electric vehicles (EV). This methodology is based on real-time connection of test setups and platforms, which may be situated in different geographical locations, belong to various cyber-physical domains, and are united in a global X-in-the-loop (XIL) experimental environment. The proposed concept, called XILforEV, allows exploring interdependencies between various physical processes that can be identified or investigated in the process of EV development. The paper discusses the following relevant topics: global XILforEV architecture; realization of required high-confidence models using dynamic data driven application systems (DDDAS) and multi fidelity models (MFM) approaches; and formulation of case studies to illustrate XILforEV application

    Energy storage systems and power conversion electronics for e-transportation and smart grid

    Get PDF
    The special issue “Energy Storage Systems and Power Conversion Electronics for E-Transportation and Smart Grid” on MDPI Energies presents 20 accepted papers, with authors from North and South America, Asia, Europe and Africa, related to the emerging trends in energy storage and power conversion electronic circuits and systems, with a specific focus on transportation electrification and on the evolution of the electric grid to a smart grid. An extensive exploitation of renewable energy sources is foreseen for smart grid as well as a close integration with the energy storage and recharging systems of the electrified transportation era. Innovations at both algorithmic and hardware (i.e., power converters, electric drives, electronic control units (ECU), energy storage modules and charging stations) levels are proposed

    Exploring sustainable pathways for urban traffic decarbonization: vehicle technologies, management strategies, and driving behaviour

    Full text link
    The global fight against climate change and air pollution prioritizes the transition to sustainable transportation options. Understanding the impacts of various sustainable pathways on emissions, travel time, and costs is crucial for researchers and policymakers. This research conducts a comprehensive microsimulation of traffic and emissions in downtown Toronto, Canada, to examine decarbonization scenarios. The resulting 140 scenarios involve different fuel types, Connected and Automated Vehicles (CAV) penetration rates, and routing strategies combined with driving style. To achieve this, transformers-based prediction models accurately forecast Greenhouse Gas (GHG) and Nitrogen Oxides (NOx) emissions and average speed for eco-routing. The study finds that 100% battery electric vehicles have the lowest GHG emissions, showing their potential as a sustainable transportation solution. However, challenges related to cost and availability persist. Hybrid Electric Vehicles and e-fuels demonstrate considerable emission reductions, emerging as promising alternatives. Integrating CAVs with anticipatory routing strategies significantly reduces GHG emissions. Additionally, eco-driving practices and eco-routing strategies have a notable impact on NOx emissions and travel time. Comprehensive cost analysis provides valuable insights into the economic implications of various strategies and technologies. These findings offer guidance to various stakeholders in formulating effective strategies, behaviour changes, and policies for emission reduction and sustainable transportation development

    Distributed local X-in-the-loop environment - a tool for electric vehicle systems design

    Get PDF
    The paper describes methodology and corresponding environment for development, validation and testing of complex electric vehicle (EV) systems. The proposed approach is based on distribution of relevant design tasks between remotely working testing equipment with real-time (RT) data sharing and data exchange. The approach is demonstrated by the example of X-in-the-loop (XIL) environment uniting electric motor test setup, hardware-in-the-loop (HIL) platform with brake-by-wire system, and the brake dynamometer. The study introduces how this configuration of experimental tools can be used by designing the brake blending and control of an EV
    corecore