83,419 research outputs found

    Augmentation of Electrical Power Laboratory Students Learning Experience Through Simulations Software Enhancements During COVID-19

    Get PDF
    The quest for experienced Electrical Power Engineers in today\u27s workforce is increasing as Supervision Control and Data Acquisition-Internet of Things (SCADA- IOT) systems continue to be integrated into the power grid, thus making the grid smarter. The overall electric power network is undergoing changes due to the industrial use of smart machines incorporating power electronics devices and the deployment of renewable energy resources such as photo-voltaic and wind power generators. The challenges that have been generated as a result of this power grid modernization require universities and technical education institutions to modify their power engineering curriculum to include more of engineering students\u27 hands-on practical laboratory experience. Additionally, the onset of the COVID-19 pandemic at the beginning of the year 2020 has created the awareness of the importance of necessary changes in the way laboratory classes are taught to improve student\u27s learning experience as well as achieve the desired learning objectives before the students graduate into the industry. Face-to-face laboratory courses need to be modified to satisfy mandated COVID 19 social distancing and other requirements. While the quest for experienced Electrical Power Engineers in today\u27s workforce is increasing as Supervision Control and Data Acquisition-Internet of Things (SCADA- IOT) systems continue to be integrated into the power grid. The grid smarter recent COVID-19 based limitations imposed on face-to-face teaching is most likely to adversely affect adequate delivery of laboratory instructions to engineering students. This study focuses on an electrical power laboratory course conducted in the wake of the COVID-19 pandemic using Electro-Mechanical System (EMS), where experiments with simulations, practical modules implementation and Data Acquisition and Control Interface (DACI) method are utilized to enhance the Laboratory experience. Electromechanical Systems Simulation Software, a web-browser based application, is used in the EMS simulations. The study examines the effectiveness of the simulations method together with remote practical demonstrations of power laboratory experiments. Every experiment conducted remotely to familiarize students with the operation of the power industry is accompanied by students\u27 computer simulations. The laboratory reports submitted by students are used to assess the result of the remote course delivery which is found to be satisfactory and more engaging to students than the traditional face-to-face teaching method

    A comprehensive fractal approach in determination of the effective thermal conductivity of gas diffusion layers in polymer electrolyte membrane fuel cells

    Get PDF
    The challenges in the fuel cell industry is to produce the efficient thermal and water management for accurate determination of the effectiveness thermal conductivity of gas diffusion layers (GDL) used in polymer electrolyte membrane fuel cells (PEMFC‟s). This is one of the factors affecting the durability of a fuel cell and need to get a solution to minimize costs and optimize the use of electrodes and cells. The main objectives of this research focus on the capability of the fractal approach for estimation the effectiveness of thermal conductivity of gas diffusion layer. Moreover, on this research also to propose modified fractal equations in determination of the effective thermal conductivity of GDL in PEMFCs based on previous study. Other objectives in this study are demonstrated the thermal conductivity of GDL treated with PTFE contents by using through-plane thermal conductivity experiment method. The through-plane measurement (experiment method) has been used in estimating through-plane thermal conductivity of the GDL. Thermal resistance for GDL also has been investigated under compression pressure 0.1 MPa until 1.0 MPa. In fractal equation, the determination of tortuous and pore fractal dimension can be done by using Scanning Electron Microscopy (SEM) method. Determination of effectiveness thermal conductivity using of fractal equation with slightly modified. In findings, it was found that fractal equation have been modified and measured on the GDL parameter characteristics. It was shown that the value of the effectiveness thermal conductivity of the sample using fractal approach is in good agreement with the experimental value. Finally, all the effective thermal conductivity measured by experimental and fractal approach have been determined with the variant temperature and compression pressure to show the validation result between of this two methods

    FORGE: An eLearning Framework for Remote Laboratory Experimentation on FIRE Testbed Infrastructure

    Get PDF
    The Forging Online Education through FIRE (FORGE) initiative provides educators and learners in higher education with access to world-class FIRE testbed infrastructure. FORGE supports experimentally driven research in an eLearning environment by complementing traditional classroom and online courses with interactive remote laboratory experiments. The project has achieved its objectives by defining and implementing a framework called FORGEBox. This framework offers the methodology, environment, tools and resources to support the creation of HTML-based online educational material capable accessing virtualized and physical FIRE testbed infrastruc- ture easily. FORGEBox also captures valuable quantitative and qualitative learning analytic information using questionnaires and Learning Analytics that can help optimise and support student learning. To date, FORGE has produced courses covering a wide range of networking and communication domains. These are freely available from FORGEBox.eu and have resulted in over 24,000 experiments undertaken by more than 1,800 students across 10 countries worldwide. This work has shown that the use of remote high- performance testbed facilities for hands-on remote experimentation can have a valuable impact on the learning experience for both educators and learners. Additionally, certain challenges in developing FIRE-based courseware have been identified, which has led to a set of recommendations in order to support the use of FIRE facilities for teaching and learning purposes

    Remote laboratories in teaching and learning – issues impinging on widespread adoption in science and engineering education

    Get PDF
    This paper discusses the major issues that impinge on the widespread adoption of remote controlled laboratories in science and engineering education. This discussion largely emerges from the work of the PEARL project and is illustrated with examples and evaluation data from the project. Firstly the rationale for wanting to offer students remote experiments is outlined. The paper deliberately avoids discussion of technical implementation issues of remote experiments but instead focuses on issues that impinge on the specification and design of such facilities. This includes pedagogic, usability and accessibility issues. It compares remote experiments to software simulations. It also considers remote experiments in the wider context for educational institutions and outlines issues that will affect their decisions as to whether to adopt this approach. In conclusion it argues that there are significant challenges to be met if remote laboratories are to achieve a widespread presence in education but expresses the hope that this delineation of the issues is a contribution towards meeting these challenges

    Teaching Construction in the Virtual University: the WINDS project

    No full text
    This paper introduces some of the Information Technology solutions adopted in Web based INtelligent Design Support (WINDS) to support education in A/E/C design. The WINDS project WINDS is an EC-funded project in the 5th Framework, Information Society Technologies programme, Flexible University key action. WINDS is divided into two actions: ·The research technology action is going to implement a learning environment integrating an intelligent tutoring system, a computer instruction management system and a set of co-operative supporting tools. ·The development action is going to build a large knowledge base supporting Architecture and Civil Engineering Design Courses and to experiment a comprehensive Virtual School of Architecture and Engineering Design. During the third year of the project, more than 400 students all over Europe will attend the Virtual School. During the next three years the WINDS project will span a total effort of about 150 man-years from 28 partners of 10 European countries. The missions of the WINDS project are: Advanced Methodologies in Design Education. WINDS drives a breakdown with conventional models in design education, i.e. classroom or distance education. WINDS implements a problem oriented knowledge transfer methodology following Roger Schank's Goal Based Scenario (GBS) pedagogical methodology. GBS encourages the learning of both skills and cases, and fosters creative problem solving. Multidisciplinary Design Education. Design requires creative synthesis and open-end problem definition at the intersection of several disciplines. WINDS experiments a valuable integration of multidisciplinary design knowledge and expertise to produce a high level standard of education. Innovative Representation, Delivery and Access to Construction Education. WINDS delivers individual education customisation by allowing the learner access through the Internet to a wide range of on-line courses and structured learning objects by means of personally tailored learning strategies. WINDS promotes the 3W paradigm: learn What you need, Where you want, When you require. Construction Practice. Construction industry is a repository of ""best practices"" and knowledge that the WINDS will profit. WINDS system benefits the ISO10303 and IFC standards to acquire knowledge of the construction process directly in digital format. On the other hand, WINDS reengineers the knowledge in up-to-date courses, educational services, which the industries can use to provide just-in-time rather than in-advance learning. WINDS IT Solutions The missions of the WINDS project state many challenging requirements both in knowledge and system architecture. Many of the solutions adopted in these fields are innovative; others are evolution of existing technologies. This paper focuses on the integration of this set of state-of-the-art technologies in an advanced and functionally sound Computer Aided Instruction system for A/E/C Design. In particular the paper deals with the following aspects: Standard Learning Technology Architecture The WINDS system relies on the in progress IEEE 1484.1 Learning Technology Standard Architecture. According to this standard the system consists of two data stores, the Knowledge Library and the Record Database, and four process: System Coach, Delivery, Evaluation and the Learner. WINDS implements the Knowledge Library into a three-tier architecture: 1.Learning Objects: ·Learning Units are collections of text and multimedia data. ·Models are represented in either IFC or STEP formats. ·Cases are sets of Learning Units and Models. Cases are noteworthy stories, which describes solutions, integrate technical detail, contain relevant design failures etc. 2.Indexes refer to the process in which the identification of relevant topics in design cases and learning units takes place. Indexing process creates structures of Learning Objects for course management, profile planning procedures and reasoning processes. 3.Courses are taxonomies of either Learning Units or a design task and Course Units. Knowledge Representation WINDS demonstrates that it is possible and valuable to integrate a widespread design expertise so that it can be effectively used to produce a high level standard of education. To this aim WINDS gathers area knowledge, design skills and expertise under the umbrellas of common knowledge representation structures and unambiguous semantics. Cases are one of the most valuable means for the representation of design expertise. A Case is a set of Learning Units and Product Models. Cases are noteworthy stories, which describe solutions, integrate technical details, contain relevant design failures, etc. Knowledge Integration Indexes are a medium among different kind of knowledge: they implement networks for navigation and access to disparate documents: HTML, video, images, CAD and product models (STEP or IFC). Concept indexes link learning topics to learning objects and group them into competencies. Index relationships are the base of the WINDS reasoning processes, and provide the foundation for system coaching functions, which proactively suggest strategies, solutions, examples and avoids students' design deadlock. Knowledge Distribution To support the data stores and the process among the partners in 10 countries efficiently, WINDS implements an object oriented client/server as COM objects. Behind the DCOM components there is the Dynamic Kernel, which dynamically embodies and maintains data stores and process. Components of the Knowledge Library can reside on several servers across the Internet. This provides for distributed transactions, e.g. a change in one Learning Object affects the Knowledge Library spread across several servers in different countries. Learning objects implemented as COM objects can wrap ownership data. Clear and univocal definition of ownerships rights enables Universities, in collaboration with telecommunication and publisher companies, to act as "education brokers". Brokerage in education and training is an innovative paradigm to provide just-in-time and personally customised value added learning knowledg

    An Interactive Web-based Application as Educational Tool for SCM Course by Using FOSS

    Get PDF
    This paper presents the application of free/open source software (FOSS) for teaching and learning one specific topic in Supply Chain Management (SCM) course. In the last few years, there is abundant FOSS for educational tools. However, educator still faces problems to implement such an education FOSS for improving the quality of education i.e. customizing of software function, developing of a specific educational media, and illustrating of a course content. The purpose of this research is to design an educational tool for increasing efficiency in conveying subject matter especially distribution problem. It has a module of real distribution problem in commodity paddy was captured. We crated an interactive Web-based application by using WSDL, PHP and My SQL, and SOAP. The result of the research will be able to improve the pedagogic approach for learning of SCM course. Keywords: Educational tool, FOSS, interactive media, SCM course

    Digital Dissemination Platform of Transportation Engineering Education Materials Founded in Adoption Research

    Get PDF
    INE/AUTC 14.0

    Designing an Open Virtual Factory of Small and Medium-sized Enterprises for Industrial Engineering Education

    Get PDF
    Curriculum of Industrial Engineering program must accomplish the requirement that graduates have the ability to design, develop, implement, and improve integrated system that include people, materials, equipment and energy. However, it is not easy to implement a curriculum that fosters such competencies. One of the strategies to achieve that is using an innovative learning media, so that the problem-based learning (PBL) can be accustomed. In this paper, we design a web-based enterprise resources planning. It is aimed to capture the real problem of small and medium-sized enterprises (SMEs) in bottled drinking water industries. The integrated system can be illustrated as ERP application that designed by using free open source software (FOSS). This research aimed to utilize the application to improve teaching methods in IE education. The result of the research can be used to improve the competencies of IE students, especially the abilities to identify, formulate, and solve the activities of the business process improvement in SMEs. Keywords Industrial engineering education, FOSS, innovative learning media, problem-based learnin
    • …
    corecore