27,822 research outputs found

    A home automation architecture based on LoRa technology and Message Queue Telemetry Transfer protocol

    Get PDF
    none5noIn recent years, Internet of Things technologies gained momentum in various application areas, including the Smart Home field. In this view, the smart objects available in the house can communicate with each other and with the outside world by adopting solutions already proposed for Internet of Things. In fact, among the challenges to face during the design and implementation of an Internet of Things–based Smart Home infrastructure, battery usage represents a key point for the realization of an efficient solution. In this context, the communication technology chosen plays a fundamental role, since transmission is generally the most energy demanding task, and Internet of Things communication technologies are designed to reduce as much as possible the power consumption. This article describes an Internet of Things-oriented architecture for the Smart Home, based on the long-range and low-power technology LoRa. Moreover, in order to enable the devices to communicate with each other and the outside world, the Message Queue Telemetry Transfer protocol is used as a domotic middleware. We show that LoRa, designed by having in mind the typical requirements of Internet of Things (i.e. low power consumption, sporadic transmission, and robustness to interference), is well-suited to also meet the need of more established home automation systems, specifically the low latency in message delivery. Interoperability among different devices may also be obtained through the Message Queue Telemetry Transfer midlleware.openEnnio Gambi, Laura Montanini, Danny Pigini, Gianluca Ciattaglia, Susanna SpinsanteGambi, Ennio; Montanini, Laura; Pigini, Danny; Ciattaglia, Gianluca; Spinsante, Susann

    A Solution Based on Bluetooth Low Energy for Smart Home Energy Management

    Get PDF
    The research and the implementation of home automation are getting more popular because the Internet of Things holds promise for making homes smarter through wireless technologies. The installation of systems based on wireless networks can play a key role also in the extension of the smart grid towards smart homes, that can be deemed as one of the most important components of smart grids. This paper proposes a fuzzy-based solution for smart energy management in a home automation wireless network. The approach, by using Bluetooth Low Energy (BLE), introduces a Fuzzy Logic Controller (FLC) in order to improve a Home Energy Management (HEM) scheme, addressing the power load of standby appliances and their loads in different hours of the day. Since the consumer is involved in the choice of switching on/off of home appliances, the approach introduced in this work proposes a fuzzy-based solution in order to manage the consumer feedbacks. Simulation results show that the proposed solution is efficient in terms of reducing peak load demand, electricity consumption charges with an increase comfort level of consumers. The performance of the proposed BLE-based wireless network scenario are validated in terms of packet delivery ratio, delay, and jitter and are compared to IEEE 802.15.4 technology

    IoT in Home Automation: A Data-Driven User Behaviour Analysis and User Adoption Test

    Get PDF
    This research carried out a thorough data-driven examination of user behaviour, adoption rates, satisfaction, and energy efficiency in the context of IoT in home automation, within the quickly changing environment of smart homes and Internet of Things (IoT) technologies. The study found that users interacted with various kinds of IoT devices in diverse ways. Smart security systems and thermostats, for example, were quickly adopted and received high levels of satisfaction. The potential for significant energy savings demonstrated the contribution of IoT devices to sustainability. These results highlight the significance of making well-informed decisions when using IoT technology to create smarter, more efficient, and greener living environments. They also provide useful insights for manufacturers, legislators, and homeowners

    Evaluating Thread protocol in the framework of Matter

    Get PDF
    Internet of Things is a technology which produced one of the biggest, and with most impact on the society, change in connectivity and automation solutions. It has a lot of new features and advantages, but also has its constraints. For this purpose, many standard have been developed, and IoT solutions designed. A Home Automation system is an application of IoT. It consist of IP-enabled embedded devices connected to the Internet using IPv6.The technology improved when IETF designed 6LoWPAN as a interface to link IPv6 to IEEE 802.15.4, a low-power wireless network standard Untill now, the IoT market is very dispersed with many solutions based in different standards, which make them incompatible between themselves. Appart from that, Home Automation technologies and solutions do not meet the requirements of low power, IP-based, security and friendly use. In order to profit from, and accelerate it, the IoT technology emergence, a unification of the standards used and the requirements needed by the different IoT solutions must be designed. The goal of this thesis was to study a new Home Automation standard called Matter. Matter is an application layer standard which aims to simplify the development for manufacturers and increase compatibility for the consumers, enabling communication across smart home devices, mobile apps, and cloud services. As Matter was to be released in the summer of 2021 but was delayed, instead of that, the Thread architecture has been studied. Thread is, with Wi-Fi, the core of the operational communications supported by Matter. Thread is a simplified, IPv6-based mesh networking architecture developed for efficient communication between energy-constrained devices around the home. As Thread is a royalty-free but closed-documentation standard, Nest Labs developed an open source implementation Called OpenThread. This study is composed by an overview of the architecture, a detailed explanation of each layer of the stack, and a implementation of the network through OpenThread. Furthermore, some test will be evaluated to provide to the reader an introduction to some of the Thread functionalities, specially related with routing

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    A Review on Energy Consumption Optimization Techniques in IoT Based Smart Building Environments

    Get PDF
    In recent years, due to the unnecessary wastage of electrical energy in residential buildings, the requirement of energy optimization and user comfort has gained vital importance. In the literature, various techniques have been proposed addressing the energy optimization problem. The goal of each technique was to maintain a balance between user comfort and energy requirements such that the user can achieve the desired comfort level with the minimum amount of energy consumption. Researchers have addressed the issue with the help of different optimization algorithms and variations in the parameters to reduce energy consumption. To the best of our knowledge, this problem is not solved yet due to its challenging nature. The gap in the literature is due to the advancements in the technology and drawbacks of the optimization algorithms and the introduction of different new optimization algorithms. Further, many newly proposed optimization algorithms which have produced better accuracy on the benchmark instances but have not been applied yet for the optimization of energy consumption in smart homes. In this paper, we have carried out a detailed literature review of the techniques used for the optimization of energy consumption and scheduling in smart homes. The detailed discussion has been carried out on different factors contributing towards thermal comfort, visual comfort, and air quality comfort. We have also reviewed the fog and edge computing techniques used in smart homes

    Recent advances in industrial wireless sensor networks towards efficient management in IoT

    Get PDF
    With the accelerated development of Internet-of- Things (IoT), wireless sensor networks (WSN) are gaining importance in the continued advancement of information and communication technologies, and have been connected and integrated with Internet in vast industrial applications. However, given the fact that most wireless sensor devices are resource constrained and operate on batteries, the communication overhead and power consumption are therefore important issues for wireless sensor networks design. In order to efficiently manage these wireless sensor devices in a unified manner, the industrial authorities should be able to provide a network infrastructure supporting various WSN applications and services that facilitate the management of sensor-equipped real-world entities. This paper presents an overview of industrial ecosystem, technical architecture, industrial device management standards and our latest research activity in developing a WSN management system. The key approach to enable efficient and reliable management of WSN within such an infrastructure is a cross layer design of lightweight and cloud-based RESTful web service

    System Design of Internet-of-Things for Residential Smart Grid

    Full text link
    Internet-of-Things (IoTs) envisions to integrate, coordinate, communicate, and collaborate real-world objects in order to perform daily tasks in a more intelligent and efficient manner. To comprehend this vision, this paper studies the design of a large scale IoT system for smart grid application, which constitutes a large number of home users and has the requirement of fast response time. In particular, we focus on the messaging protocol of a universal IoT home gateway, where our cloud enabled system consists of a backend server, unified home gateway (UHG) at the end users, and user interface for mobile devices. We discuss the features of such IoT system to support a large scale deployment with a UHG and real-time residential smart grid applications. Based on the requirements, we design an IoT system using the XMPP protocol, and implemented in a testbed for energy management applications. To show the effectiveness of the designed testbed, we present some results using the proposed IoT architecture.Comment: 10 pages, 6 figures, journal pape
    corecore