46,074 research outputs found

    Applying Lessons from Cyber Attacks on Ukrainian Infrastructures to Secure Gateways onto the Industrial Internet of Things

    Get PDF
    Previous generations of safety-related industrial control systems were ‘air gapped’. In other words, process control components including Programmable Logic Controllers (PLCs) and smart sensor/actuators were disconnected and isolated from local or wide area networks. This provided a degree of protection; attackers needed physical access to compromise control systems components. Over time this ‘air gap’ has gradually been eroded. Switches and gateways have subsequently interfaced industrial protocols, including Profibus and Modbus, so that data can be drawn from safety-related Operational Technology into enterprise information systems using TCP/IP. Senior management uses these links to monitor production processes and inform strategic planning. The Industrial Internet of Things represents another step in this evolution – enabling the coordination of physically distributed resources from a centralized location. The growing range and sophistication of these interconnections create additional security concerns for the operation and management of safety-critical systems. This paper uses lessons learned from recent attacks on Ukrainian critical infrastructures to guide a forensic analysis of an IIoT switch. The intention is to identify and mitigate vulnerabilities that would enable similar attacks to be replicated across Europe and North America

    Software Defined Networks based Smart Grid Communication: A Comprehensive Survey

    Get PDF
    The current power grid is no longer a feasible solution due to ever-increasing user demand of electricity, old infrastructure, and reliability issues and thus require transformation to a better grid a.k.a., smart grid (SG). The key features that distinguish SG from the conventional electrical power grid are its capability to perform two-way communication, demand side management, and real time pricing. Despite all these advantages that SG will bring, there are certain issues which are specific to SG communication system. For instance, network management of current SG systems is complex, time consuming, and done manually. Moreover, SG communication (SGC) system is built on different vendor specific devices and protocols. Therefore, the current SG systems are not protocol independent, thus leading to interoperability issue. Software defined network (SDN) has been proposed to monitor and manage the communication networks globally. This article serves as a comprehensive survey on SDN-based SGC. In this article, we first discuss taxonomy of advantages of SDNbased SGC.We then discuss SDN-based SGC architectures, along with case studies. Our article provides an in-depth discussion on routing schemes for SDN-based SGC. We also provide detailed survey of security and privacy schemes applied to SDN-based SGC. We furthermore present challenges, open issues, and future research directions related to SDN-based SGC.Comment: Accepte

    The Design and Implementation of a PCIe-based LESS Label Switch

    Get PDF
    With the explosion of the Internet of Things, the number of smart, embedded devices has grown exponentially in the last decade, with growth projected at a commiserate rate. These devices create strain on the existing infrastructure of the Internet, creating challenges with scalability of routing tables and reliability of packet delivery. Various schemes based on Location-Based Forwarding and ID-based routing have been proposed to solve the aforementioned problems, but thus far, no solution has completely been achieved. This thesis seeks to improve current proposed LORIF routers by designing, implementing, and testing and a PCIe-based LESS switch to process unrouteable packets under the current LESS forwarding engine

    IoT Sentinel: Automated Device-Type Identification for Security Enforcement in IoT

    Full text link
    With the rapid growth of the Internet-of-Things (IoT), concerns about the security of IoT devices have become prominent. Several vendors are producing IP-connected devices for home and small office networks that often suffer from flawed security designs and implementations. They also tend to lack mechanisms for firmware updates or patches that can help eliminate security vulnerabilities. Securing networks where the presence of such vulnerable devices is given, requires a brownfield approach: applying necessary protection measures within the network so that potentially vulnerable devices can coexist without endangering the security of other devices in the same network. In this paper, we present IOT SENTINEL, a system capable of automatically identifying the types of devices being connected to an IoT network and enabling enforcement of rules for constraining the communications of vulnerable devices so as to minimize damage resulting from their compromise. We show that IOT SENTINEL is effective in identifying device types and has minimal performance overhead
    • …
    corecore