14,444 research outputs found

    Internet connection method for mobile ad hoc wireless networks

    Get PDF
    In recent years, wireless networks with Internet services have become more and more popular. Technologies which integrate Internet and wireless networks have extended traditional Internet applications into a more flexible and dynamic environment. This research work investigates the technology that supports the connection between a Mobile Ad Hoc Wireless Network (MANET) and the Internet, which enables the current wireless Internet technologies to provide a ubiquitous wireless life style. With detailed analysis of the existing wireless Internet technologies and MANETs regarding their features and applications, the demand and lack of research work for an application to provide Internet connection to MANET is indicated. The primary difficulty for MANET and Internet connection is that the dynamic features of MANET do not suit the traditional connection methods used in infrastructure wireless networks. This thesis introduces new concept of the 'Gateway Awareness' (GAW) to the wireless devices in the MANET. GAW is a new routing protocol designed by the author of this thesis, at the University of Warwick. Based on GAW, an inclusive definition for the connection method, which supports the Internet connection and keeps the independency of routing in MANET, is addressed. Unlike other research work, this method supports the MANET and Internet communication in both directions. Furthermore, it explores possible ways of using the Internet as an extension for wireless communications. The GAW routing method is developed from destination sequenced distance vector (DSDV) routing protocol. However, it defines a layer of wireless nodes (known as GAWNs) with exclusive functions for the Internet connection task. The layer of GAWNs brings a new set of route update and route selection method. Simulations show that the GAW routing method provides quality Internet connection performance in different scenarios compared with other methods. In particular, the connection is completed with minimum effect on the independent MANET while the routing efficiency and accuracy is guaranteed

    Multimedia Content Distribution in Hybrid Wireless Networks using Weighted Clustering

    Get PDF
    Fixed infrastructured networks naturally support centralized approaches for group management and information provisioning. Contrary to infrastructured networks, in multi-hop ad-hoc networks each node acts as a router as well as sender and receiver. Some applications, however, requires hierarchical arrangements that-for practical reasons-has to be done locally and self-organized. An additional challenge is to deal with mobility that causes permanent network partitioning and re-organizations. Technically, these problems can be tackled by providing additional uplinks to a backbone network, which can be used to access resources in the Internet as well as to inter-link multiple ad-hoc network partitions, creating a hybrid wireless network. In this paper, we present a prototypically implemented hybrid wireless network system optimized for multimedia content distribution. To efficiently manage the ad-hoc communicating devices a weighted clustering algorithm is introduced. The proposed localized algorithm deals with mobility, but does not require geographical information or distances.Comment: 2nd ACM Workshop on Wireless Multimedia Networking and Performance Modeling 2006 (ISBN 1-59593-485

    Energy Efficient Location Aided Routing Protocol for Wireless MANETs

    Get PDF
    A Mobile Ad-Hoc Network (MANET) is a collection of wireless mobile nodes forming a temporary network without using any centralized access point, infrastructure, or centralized administration. In this paper we introduce an Energy Efficient Location Aided Routing (EELAR) Protocol for MANETs that is based on the Location Aided Routing (LAR). EELAR makes significant reduction in the energy consumption of the mobile nodes batteries by limiting the area of discovering a new route to a smaller zone. Thus, control packets overhead is significantly reduced. In EELAR a reference wireless base station is used and the network's circular area centered at the base station is divided into six equal sub-areas. At route discovery instead of flooding control packets to the whole network area, they are flooded to only the sub-area of the destination mobile node. The base station stores locations of the mobile nodes in a position table. To show the efficiency of the proposed protocol we present simulations using NS-2. Simulation results show that EELAR protocol makes an improvement in control packet overhead and delivery ratio compared to AODV, LAR, and DSR protocols.Comment: 9 Pages IEEE format, International Journal of Computer Science and Information Security, IJCSIS 2009, ISSN 1947 5500, Impact factor 0.423, http://sites.google.com/site/ijcsis

    A survey on subjecting electronic product code and non-ID objects to IP identification

    Full text link
    Over the last decade, both research on the Internet of Things (IoT) and real-world IoT applications have grown exponentially. The IoT provides us with smarter cities, intelligent homes, and generally more comfortable lives. However, the introduction of these devices has led to several new challenges that must be addressed. One of the critical challenges facing interacting with IoT devices is to address billions of devices (things) around the world, including computers, tablets, smartphones, wearable devices, sensors, and embedded computers, and so on. This article provides a survey on subjecting Electronic Product Code and non-ID objects to IP identification for IoT devices, including their advantages and disadvantages thereof. Different metrics are here proposed and used for evaluating these methods. In particular, the main methods are evaluated in terms of their: (i) computational overhead, (ii) scalability, (iii) adaptability, (iv) implementation cost, and (v) whether applicable to already ID-based objects and presented in tabular format. Finally, the article proves that this field of research will still be ongoing, but any new technique must favorably offer the mentioned five evaluative parameters.Comment: 112 references, 8 figures, 6 tables, Journal of Engineering Reports, Wiley, 2020 (Open Access

    Unified radio and network control across heterogeneous hardware platforms

    Get PDF
    Experimentation is an important step in the investigation of techniques for handling spectrum scarcity or the development of new waveforms in future wireless networks. However, it is impractical and not cost effective to construct custom platforms for each future network scenario to be investigated. This problem is addressed by defining Unified Programming Interfaces that allow common access to several platforms for experimentation-based prototyping, research, and development purposes. The design of these interfaces is driven by a diverse set of scenarios that capture the functionality relevant to future network implementations while trying to keep them as generic as possible. Herein, the definition of this set of scenarios is presented as well as the architecture for supporting experimentation-based wireless research over multiple hardware platforms. The proposed architecture for experimentation incorporates both local and global unified interfaces to control any aspect of a wireless system while being completely agnostic to the actual technology incorporated. Control is feasible from the low-level features of individual radios to the entire network stack, including hierarchical control combinations. A testbed to enable the use of the above architecture is utilized that uses a backbone network in order to be able to extract measurements and observe the overall behaviour of the system under test without imposing further communication overhead to the actual experiment. Based on the aforementioned architecture, a system is proposed that is able to support the advancement of intelligent techniques for future networks through experimentation while decoupling promising algorithms and techniques from the capabilities of a specific hardware platform
    corecore