1,876 research outputs found

    An FPTAS for Bargaining Networks with Unequal Bargaining Powers

    Full text link
    Bargaining networks model social or economic situations in which agents seek to form the most lucrative partnership with another agent from among several alternatives. There has been a flurry of recent research studying Nash bargaining solutions (also called 'balanced outcomes') in bargaining networks, so that we now know when such solutions exist, and also that they can be computed efficiently, even by market agents behaving in a natural manner. In this work we study a generalization of Nash bargaining, that models the possibility of unequal 'bargaining powers'. This generalization was introduced in [KB+10], where it was shown that the corresponding 'unequal division' (UD) solutions exist if and only if Nash bargaining solutions exist, and also that a certain local dynamics converges to UD solutions when they exist. However, the bound on convergence time obtained for that dynamics was exponential in network size for the unequal division case. This bound is tight, in the sense that there exists instances on which the dynamics of [KB+10] converges only after exponential time. Other approaches, such as the one of Kleinberg and Tardos, do not generalize to the unsymmetrical case. Thus, the question of computational tractability of UD solutions has remained open. In this paper, we provide an FPTAS for the computation of UD solutions, when such solutions exist. On a graph G=(V,E) with weights (i.e. pairwise profit opportunities) uniformly bounded above by 1, our FPTAS finds an \eps-UD solution in time poly(|V|,1/\eps). We also provide a fast local algorithm for finding \eps-UD solution, providing further justification that a market can find such a solution.Comment: 18 pages; Amin Saberi (Ed.): Internet and Network Economics - 6th International Workshop, WINE 2010, Stanford, CA, USA, December 13-17, 2010. Proceedings

    Budget-Feasible Mechanism Design for Non-Monotone Submodular Objectives: Offline and Online

    Get PDF
    The framework of budget-feasible mechanism design studies procurement auctions where the auctioneer (buyer) aims to maximize his valuation function subject to a hard budget constraint. We study the problem of designing truthful mechanisms that have good approximation guarantees and never pay the participating agents (sellers) more than the budget. We focus on the case of general (non-monotone) submodular valuation functions and derive the first truthful, budget-feasible and O(1)O(1)-approximate mechanisms that run in polynomial time in the value query model, for both offline and online auctions. Prior to our work, the only O(1)O(1)-approximation mechanism known for non-monotone submodular objectives required an exponential number of value queries. At the heart of our approach lies a novel greedy algorithm for non-monotone submodular maximization under a knapsack constraint. Our algorithm builds two candidate solutions simultaneously (to achieve a good approximation), yet ensures that agents cannot jump from one solution to the other (to implicitly enforce truthfulness). Ours is the first mechanism for the problem where---crucially---the agents are not ordered with respect to their marginal value per cost. This allows us to appropriately adapt these ideas to the online setting as well. To further illustrate the applicability of our approach, we also consider the case where additional feasibility constraints are present. We obtain O(p)O(p)-approximation mechanisms for both monotone and non-monotone submodular objectives, when the feasible solutions are independent sets of a pp-system. With the exception of additive valuation functions, no mechanisms were known for this setting prior to our work. Finally, we provide lower bounds suggesting that, when one cares about non-trivial approximation guarantees in polynomial time, our results are asymptotically best possible.Comment: Accepted to EC 201

    Budget-feasible mechanism design for non-monotone submodular objectives: Offline and online

    Get PDF
    The framework of budget-feasible mechanism design studies procurement auctions where the auctioneer (buyer) aims to maximize his valuation function subject to a hard budget constraint. We study the problem of designing truthful mechanisms that have good approximation guarantees and never pay the participating agents (sellers) more than the budget. We focus on the case of general (non-monotone) submodular valuation functions and derive the first truthful, budget-feasible and O(1)-approximation mechanisms that run in polynomial time in the value query model, for both offline and online auctions. Since the introduction of the problem by Singer [40], obtaining efficient mechanisms for objectives that go beyond the class of monotone submodular functions has been elusive. Prior to our work, the only O(1)-approximation mechanism known for non-monotone submodular objectives required an exponential number of value queries. At the heart of our approach lies a novel greedy algorithm for non-monotone submodular maximization under a knapsack constraint. Our algorithm builds two candidate solutions simultaneously (to achieve a good approximation), yet ensures that agents cannot jump from one solution to the other (to implicitly enforce truthfulness). Ours is the first mechanism for the problem where-crucially-the agents are not ordered according to their marginal value per cost. This allows us to appropriately adapt these ideas to the online setting as well. To further illustrate the applicability of our approach, we also consider the case where additional feasibility constraints are present, e.g., at most k agents can be selected. We obtain O(p)-approximation mechanisms for both monotone and non-monotone submodular objectives, when the feasible solutions are independent sets of a p-system. With the exception of additive valuation functions, no mechanisms were known for this setting prior to our work. Finally, we provide lower bounds suggesting that, when one cares about non-trivial approximation guaran

    Cooperation through social influence

    Get PDF
    We consider a simple and altruistic multiagent system in which the agents are eager to perform a collective task but where their real engagement depends on the willingness to perform the task of other influential agents. We model this scenario by an influence game, a cooperative simple game in which a team (or coalition) of players succeeds if it is able to convince enough agents to participate in the task (to vote in favor of a decision). We take the linear threshold model as the influence model. We show first the expressiveness of influence games showing that they capture the class of simple games. Then we characterize the computational complexity of various problems on influence games, including measures (length and width), values (Shapley-Shubik and Banzhaf) and properties (of teams and players). Finally, we analyze those problems for some particular extremal cases, with respect to the propagation of influence, showing tighter complexity characterizations.Peer ReviewedPostprint (author’s final draft

    Annual Report Of Research and Creative Productions, January to December, 2011

    Get PDF
    2011 Annual Report of Research and Creative Productions, Morehead State University, Division of Academic Affairs, Research and Creative Productions Committee

    Annual Report Of Research and Creative Productions, January to December, 2011

    Get PDF
    2011 Annual Report of Research and Creative Productions, Morehead State University, Division of Academic Affairs, Research and Creative Productions Committee
    • …
    corecore