1,425 research outputs found

    On the Tree Conjecture for the Network Creation Game

    Get PDF
    Selfish Network Creation focuses on modeling real world networks from a game-theoretic point of view. One of the classic models by Fabrikant et al.[PODC\u2703] is the network creation game, where agents correspond to nodes in a network which buy incident edges for the price of alpha per edge to minimize their total distance to all other nodes. The model is well-studied but still has intriguing open problems. The most famous conjectures state that the price of anarchy is constant for all alpha and that for alpha >= n all equilibrium networks are trees. We introduce a novel technique for analyzing stable networks for high edge-price alpha and employ it to improve on the best known bounds for both conjectures. In particular we show that for alpha > 4n-13 all equilibrium networks must be trees, which implies a constant price of anarchy for this range of alpha. Moreover, we also improve the constant upper bound on the price of anarchy for equilibrium trees

    A Generic Multi-Player Transformation Algorithm for Solving Large-Scale Zero-Sum Extensive-Form Adversarial Team Games

    Full text link
    Many recent practical and theoretical breakthroughs focus on adversarial team multi-player games (ATMGs) in ex ante correlation scenarios. In this setting, team members are allowed to coordinate their strategies only before the game starts. Although there existing algorithms for solving extensive-form ATMGs, the size of the game tree generated by the previous algorithms grows exponentially with the number of players. Therefore, how to deal with large-scale zero-sum extensive-form ATMGs problems close to the real world is still a significant challenge. In this paper, we propose a generic multi-player transformation algorithm, which can transform any multi-player game tree satisfying the definition of AMTGs into a 2-player game tree, such that finding a team-maxmin equilibrium with correlation (TMECor) in large-scale ATMGs can be transformed into solving NE in 2-player games. To achieve this goal, we first introduce a new structure named private information pre-branch, which consists of a temporary chance node and coordinator nodes and aims to make decisions for all potential private information on behalf of the team members. We also show theoretically that NE in the transformed 2-player game is equivalent TMECor in the original multi-player game. This work significantly reduces the growth of action space and nodes from exponential to constant level. This enables our work to outperform all the previous state-of-the-art algorithms in finding a TMECor, with 182.89, 168.47, 694.44, and 233.98 significant improvements in the different Kuhn Poker and Leduc Poker cases (21K3, 21K4, 21K6 and 21L33). In addition, this work first practically solves the ATMGs in a 5-player case which cannot be conducted by existing algorithms.Comment: 9 pages, 5 figures, NIPS 202

    A Reference Model For Mobile Product Information Systems

    Get PDF
    This paper analyses the state of the art in research and practice on mobile product information systems. Based on literature review and multiple case study research, we design a reference model that is suitable for researchers and practitioners as a first reference point and recommendation for the construction and analysis of mobile product information systems
    • …
    corecore