12,982 research outputs found

    The "New European Union" - Characteristics, Contradictions and Challenges

    Get PDF
    Endorsement of the ‘Reform Treaty’, culminating in its’ signing as the Treaty of Lisbon in December 2007, promises to end the EU’s enduring institutional problems. The compromise reached is the best realistically possible outcome given the divergent interests in the EU27. Yet uncertainties and reservations remain: the Treaty must be ratified by all member states; and the proposed institutional solutions have to be tested in practice. Important areas of economic and social policy, along with much of foreign and security policy, and all of defence, are still the domain of national governments. The Single Market is yet to be completed and in several member state polities resistance to greater liberalisation is strong. The framework conditions for functionality have improved but this does not guarantee that governments will vigorously tackle common challenges in a coordinated and efficient way at national and European levels. Further differentiation within the EU appears unavoidable.

    Systematizing Decentralization and Privacy: Lessons from 15 Years of Research and Deployments

    Get PDF
    Decentralized systems are a subset of distributed systems where multiple authorities control different components and no authority is fully trusted by all. This implies that any component in a decentralized system is potentially adversarial. We revise fifteen years of research on decentralization and privacy, and provide an overview of key systems, as well as key insights for designers of future systems. We show that decentralized designs can enhance privacy, integrity, and availability but also require careful trade-offs in terms of system complexity, properties provided, and degree of decentralization. These trade-offs need to be understood and navigated by designers. We argue that a combination of insights from cryptography, distributed systems, and mechanism design, aligned with the development of adequate incentives, are necessary to build scalable and successful privacy-preserving decentralized systems

    Foundations, Properties, and Security Applications of Puzzles: A Survey

    Full text link
    Cryptographic algorithms have been used not only to create robust ciphertexts but also to generate cryptograms that, contrary to the classic goal of cryptography, are meant to be broken. These cryptograms, generally called puzzles, require the use of a certain amount of resources to be solved, hence introducing a cost that is often regarded as a time delay---though it could involve other metrics as well, such as bandwidth. These powerful features have made puzzles the core of many security protocols, acquiring increasing importance in the IT security landscape. The concept of a puzzle has subsequently been extended to other types of schemes that do not use cryptographic functions, such as CAPTCHAs, which are used to discriminate humans from machines. Overall, puzzles have experienced a renewed interest with the advent of Bitcoin, which uses a CPU-intensive puzzle as proof of work. In this paper, we provide a comprehensive study of the most important puzzle construction schemes available in the literature, categorizing them according to several attributes, such as resource type, verification type, and applications. We have redefined the term puzzle by collecting and integrating the scattered notions used in different works, to cover all the existing applications. Moreover, we provide an overview of the possible applications, identifying key requirements and different design approaches. Finally, we highlight the features and limitations of each approach, providing a useful guide for the future development of new puzzle schemes.Comment: This article has been accepted for publication in ACM Computing Survey

    Implementation of a Secure Internet Voting Protocol

    Get PDF
    Voting is one of the most important activities in a democratic society. In a traditional voting environment voting process sometimes becomes quite inconvenient due to the reluctance of certain voters to visit a polling booth to cast votes besides involving huge social and human resources. The development of computer networks and elaboration of cryptographic techniques facilitate the implementation of electronic voting. In this work we propose a secure electronic voting protocol that is suitable for large scale voting over the Internet. The protocol allows a voter to cast his or her ballot anonymously, by exchanging untraceable yet authentic messages. The e-voting protocol is based on blind signatures and has the properties of anonymity, mobility, efficiency, robustness, authentication, uniqueness, and universal verifiability and coercion-resistant. The proposed protocol encompasses three distinct phases - that of registration phase, voting phase and counting phase involving five parties, the voter, certification centre, authentication server, voting server and a tallying server
    corecore