15,191 research outputs found

    Distributed Random Process for a Large-Scale Peer-to-Peer Lottery

    Get PDF
    Most online lotteries today fail to ensure the verifiability of the random process and rely on a trusted third party. This issue has received little attention since the emergence of distributed protocols like Bitcoin that demonstrated the potential of protocols with no trusted third party. We argue that the security requirements of online lotteries are similar to those of online voting, and propose a novel distributed online lottery protocol that applies techniques developed for voting applications to an existing lottery protocol. As a result, the protocol is scalable, provides efficient verification of the random process and does not rely on a trusted third party nor on assumptions of bounded computational resources. An early prototype confirms the feasibility of our approach

    Vulnerability analysis of three remote voting methods

    Get PDF
    This article analyses three methods of remote voting in an uncontrolled environment: postal voting, internet voting and hybrid voting. It breaks down the voting process into different stages and compares their vulnerabilities considering criteria that must be respected in any democratic vote: confidentiality, anonymity, transparency, vote unicity and authenticity. Whether for safety or reliability, each vulnerability is quantified by three parameters: size, visibility and difficulty to achieve. The study concludes that the automatisation of treatments combined with the dematerialisation of the objects used during an election tends to substitute visible vulnerabilities of a lesser magnitude by invisible and widespread vulnerabilities.Comment: 15 page

    Systematizing Decentralization and Privacy: Lessons from 15 Years of Research and Deployments

    Get PDF
    Decentralized systems are a subset of distributed systems where multiple authorities control different components and no authority is fully trusted by all. This implies that any component in a decentralized system is potentially adversarial. We revise fifteen years of research on decentralization and privacy, and provide an overview of key systems, as well as key insights for designers of future systems. We show that decentralized designs can enhance privacy, integrity, and availability but also require careful trade-offs in terms of system complexity, properties provided, and degree of decentralization. These trade-offs need to be understood and navigated by designers. We argue that a combination of insights from cryptography, distributed systems, and mechanism design, aligned with the development of adequate incentives, are necessary to build scalable and successful privacy-preserving decentralized systems
    • …
    corecore