4,263 research outputs found

    Deep Neural Networks based Meta-Learning for Network Intrusion Detection

    Full text link
    The digitization of different components of industry and inter-connectivity among indigenous networks have increased the risk of network attacks. Designing an intrusion detection system to ensure security of the industrial ecosystem is difficult as network traffic encompasses various attack types, including new and evolving ones with minor changes. The data used to construct a predictive model for computer networks has a skewed class distribution and limited representation of attack types, which differ from real network traffic. These limitations result in dataset shift, negatively impacting the machine learning models' predictive abilities and reducing the detection rate against novel attacks. To address the challenges, we propose a novel deep neural network based Meta-Learning framework; INformation FUsion and Stacking Ensemble (INFUSE) for network intrusion detection. First, a hybrid feature space is created by integrating decision and feature spaces. Five different classifiers are utilized to generate a pool of decision spaces. The feature space is then enriched through a deep sparse autoencoder that learns the semantic relationships between attacks. Finally, the deep Meta-Learner acts as an ensemble combiner to analyze the hybrid feature space and make a final decision. Our evaluation on stringent benchmark datasets and comparison to existing techniques showed the effectiveness of INFUSE with an F-Score of 0.91, Accuracy of 91.6%, and Recall of 0.94 on the Test+ dataset, and an F-Score of 0.91, Accuracy of 85.6%, and Recall of 0.87 on the stringent Test-21 dataset. These promising results indicate the strong generalization capability and the potential to detect network attacks.Comment: Pages: 15, Figures: 10 and Tables:

    Multimodal Approach for Malware Detection

    Get PDF
    Although malware detection is a very active area of research, few works were focused on using physical properties (e.g., power consumption) and multimodal features for malware detection. We designed an experimental testbed that allowed us to run samples of malware and non-malicious software applications and to collect power consumption, network traffic, and system logs data, and subsequently to extract dynamic behavioral-based features. We also extracted code-based static features of both malware and non-malicious software applications. These features were used for malware detection based on: feature level fusion using power consumption and network traffic data, feature level fusion using network traffic data and system logs, and multimodal feature level and decision level fusion. The contributions when using feature level fusion of power consumption and network traffic data are: (1) We focused on detecting real malware using the extracted dynamic behavioral features (both power-based and network traffic-based) and supervised machine learning algorithms, which has not been done by any of the prior works. (2) We ran a large number of machine learning experiments, which allowed us to identify the best performing learner, DC voltage rails that led to the best malware detection performance, and the subset of features that are the best predictors for malware detection. (3) The comparison of malware detection performance was done using a comprehensive set of metrics that reflect different aspects of the quality of malware detection. In the case of the feature level fusion using network traffic data and system logs, the contributions are: (1) Most of the previous works that have used network flows-based features have done classification of the network traffic, while our focus was on classifying the software running in a machine as malware and non-malicious software using the extracted dynamic behavioral features. (2) We experimented with different sizes of the training set (i.e., 90%, 75%, 50%, and 25% of the data) and found that smaller training sets produced very good classification results. This aspect of our work has a practical value because the manual labeling of the training set is a tedious and time consuming process. In this dissertation we present a multimodal deep learning neural network that integrates different modalities (i.e., power consumption, system logs, network traffic, and code-based static data) using decision level fusion. We evaluated the performance of each modality individually, when using feature level fusion, and when using decision level fusion. The contributions of our multimodal approach are as follow: (1) Collecting data from different modalities allowed us to develop a multimodal approach to malware detection, which has not been widely explored by prior works. Even more, none of the previous works compared the performance of feature level fusion with decision level fusion, which is explored in this dissertation. (2) We proposed a multimodal decision level fusion malware detection approach using a deep neural network and compared its performance with the performance of feature level fusion approaches based on deep neural network and standard supervised machine learning algorithms (i.e., Random Forest, J48, JRip, PART, Naive Bayes, and SMO)

    Multimedia Context Awareness for Smart Mobile Environments

    Get PDF
    openNowadays the development of the IoT framework and the resulting huge number of smart connected devices opens the door to exploit the presence of multiple smart nodes to accomplish a variety of tasks. Multimedia context awareness, together with the concept of ambient intelligence, is tightly related to the IoT framework, and it can be applied to a large number of smart scenarios. In this thesis, the aim is to study and analyze the role of context awareness in different applications related to smart mobile environments, such as future smart spaces and connected cities. Indeed, this research work focuses on different aspects of ambient intelligence, such as audio-awareness and wireless-awareness. In particular, this thesis tackles two main research topics: the first one, related to the framework of audio-awareness, concerns a multiple observations approach for smart speaker recognition in mobile environments; the second one, tied to the concept of wireless-awareness, regards Unmanned Aerial Vehicle (UAV) detection based on WiFi statistical fingerprint analysis.openXXXI CICLO - SC. E TECN. ING. ELETTR. E DELLE TEL. - Ambienti cognitivi interattiviGaribotto, Chiar

    Capturing Evolution Genes for Time Series Data

    Full text link
    The modeling of time series is becoming increasingly critical in a wide variety of applications. Overall, data evolves by following different patterns, which are generally caused by different user behaviors. Given a time series, we define the evolution gene to capture the latent user behaviors and to describe how the behaviors lead to the generation of time series. In particular, we propose a uniform framework that recognizes different evolution genes of segments by learning a classifier, and adopt an adversarial generator to implement the evolution gene by estimating the segments' distribution. Experimental results based on a synthetic dataset and five real-world datasets show that our approach can not only achieve a good prediction results (e.g., averagely +10.56% in terms of F1), but is also able to provide explanations of the results.Comment: a preprint version. arXiv admin note: text overlap with arXiv:1703.10155 by other author
    corecore