4,270 research outputs found

    Network Slicing Based 5G and Future Mobile Networks: Mobility, Resource Management, and Challenges

    Get PDF
    5G networks are expected to be able to satisfy users' different QoS requirements. Network slicing is a promising technology for 5G networks to provide services tailored for users' specific QoS demands. Driven by the increased massive wireless data traffic from different application scenarios, efficient resource allocation schemes should be exploited to improve the flexibility of network resource allocation and capacity of 5G networks based on network slicing. Due to the diversity of 5G application scenarios, new mobility management schemes are greatly needed to guarantee seamless handover in network-slicing-based 5G systems. In this article, we introduce a logical architecture for network-slicing-based 5G systems, and present a scheme for managing mobility between different access networks, as well as a joint power and subchannel allocation scheme in spectrum-sharing two-tier systems based on network slicing, where both the co-tier interference and cross-tier interference are taken into account. Simulation results demonstrate that the proposed resource allocation scheme can flexibly allocate network resources between different slices in 5G systems. Finally, several open issues and challenges in network-slicing-based 5G networks are discussed, including network reconstruction, network slicing management, and cooperation with other 5G technologies

    5g new radio access and core network slicing for next-generation network services and management

    Get PDF
    In recent years, fifth-generation New Radio (5G NR) has attracted much attention owing to its potential in enhancing mobile access networks and enabling better support for heterogeneous services and applications. Network slicing has garnered substantial focus as it promises to offer a higher degree of isolation between subscribers with diverse quality-of-service requirements. Integrating 5G NR technologies, specifically the mmWave waveform and numerology schemes, with network slicing can unlock unparalleled performance so crucial to meeting the demands of high throughput and sub-millisecond latency constraints. While conceding that optimizing next-generation access network performance is extremely important, it needs to be acknowledged that doing so for the core network is equally as significant. This is majorly due to the numerous core network functions that execute control tasks to establish end-to-end user sessions and route access network traffic. Consequently, the core network has a significant impact on the quality-of-experience of the radio access network customers. Currently, the core network lacks true end-to-end slicing isolation and reliability, and thus there is a dire need to examine more stringent configurations that offer the required levels of slicing isolation for the envisioned networking landscape. Considering the factors mentioned above, a sequential approach is adopted starting with the radio access network and progressing to the core network. First, to maximize the downlink average spectral efficiency of an enhanced mobile broadband slice in a time division duplex radio access network while meeting the quality-of-service requirements, an optimization problem is formulated to determine the duplex ratio, numerology scheme, power, and bandwidth allocation. Subsequently, to minimize the uplink transmission power of an ultra-reliable low latency communications slice while satisfying the quality-of-service constraints, a second optimization problem is formulated to determine the above-mentioned parameters and allocations. Because 5G NR supports dual-band transmissions, it also facilitates the usage of different numerology schemes and duplex ratios across bands simultaneously. Both problems, being mixed-integer non-linear programming problems, are relaxed into their respective convex equivalents and subsequently solved. Next, shifting attention to aerial networks, a priority-based 5G NR unmanned aerial vehicle network (UAV) is considered where the enhanced mobile broadband and ultra-reliable low latency communications services are considered as best-effort and high-priority slices, correspondingly. Following the application of a band access policy, an optimization problem is formulated. The goal is to minimize the downlink quality-of-service gap for the best-effort service, while still meeting the quality-of-service constraints of the high-priority service. This involves the allocation of transmission power and assignment of resource blocks. Given that this problem is a mixed-integer nonlinear programming problem, a low-complexity algorithm, PREDICT, i.e., PRiority BasED Resource AllocatIon in Adaptive SliCed NeTwork, which considers the channel quality on each individual resource block over both bands, is designed to solve the problem with a more accurate accounting for high-frequency channel conditions. Transitioning to minimizing the operational latency of the core network, an integer linear programming problem is formulated to instantiate network function instances, assign them to core network servers, assign slices and users to network function instances, and allocate computational resources while maintaining virtual network function isolation and physical separation of the core network control and user planes. The actor-critic method is employed to solve this problem for three proposed core network operation configurations, each offering an added degree of reliability and isolation over the default configuration that is currently standardized by the 3GPP. Looking ahead to potential future research directions, optimizing carrier aggregation-based resource allocation across triple-band sliced access networks emerges as a promising avenue. Additionally, the integration of coordinated multi-point techniques with carrier aggregation in multi-UAV NR aerial networks is especially challenging. The introduction of added carrier frequencies and channel bandwidths, while enhancing flexibility and robustness, complicates band-slice assignments and user-UAV associations. Another layer of intriguing yet complex research involves optimizing handovers in high-mobility UAV networks, where both users and UAVs are mobile. UAV trajectory planning, which is already NP-hard even in static-user scenarios, becomes even more intricate to obtain optimal solutions in high-mobility user cases

    Integration of Clouds to Industrial Communication Networks

    Get PDF
    Cloud computing, owing to its ubiquitousness, scalability and on-demand ac- cess, has transformed into many traditional sectors, such as telecommunication and manufacturing production. As the Fifth Generation Wireless Specifica- tions (5G) emerges, the demand on ubiquitous and re-configurable computing resources for handling tremendous traffic from omnipresent mobile devices has been put forward. And therein lies the adaption of cloud-native model in service delivery of telecommunication networks. However, it takes phased approaches to successfully transform the traditional Telco infrastructure to a softwarized model, especially for Radio Access Networks (RANs), which, as of now, mostly relies on purpose-built Digital Signal Processors (DSPs) for computing and processing tasks.On the other hand, Industry 4.0 is leading the digital transformation in manufacturing sectors, wherein the industrial networks is evolving towards wireless connectivity and the automation process managements are shifting to clouds. However, such integration may introduce unwanted disturbances to critical industrial automation processes. This leads to challenges to guaran- tee the performance of critical applications under the integration of different systems.In the work presented in this thesis, we mainly explore the feasibility of inte- grating wireless communication, industrial networks and cloud computing. We have mainly investigated the delay-inhibited challenges and the performance impacts of using cloud-native models for critical applications. We design a solution, targeting at diminishing the performance degradation caused by the integration of cloud computing

    Towards Enabling Critical mMTC: A Review of URLLC within mMTC

    Full text link

    Building the Future Internet through FIRE

    Get PDF
    The Internet as we know it today is the result of a continuous activity for improving network communications, end user services, computational processes and also information technology infrastructures. The Internet has become a critical infrastructure for the human-being by offering complex networking services and end-user applications that all together have transformed all aspects, mainly economical, of our lives. Recently, with the advent of new paradigms and the progress in wireless technology, sensor networks and information systems and also the inexorable shift towards everything connected paradigm, first as known as the Internet of Things and lately envisioning into the Internet of Everything, a data-driven society has been created. In a data-driven society, productivity, knowledge, and experience are dependent on increasingly open, dynamic, interdependent and complex Internet services. The challenge for the Internet of the Future design is to build robust enabling technologies, implement and deploy adaptive systems, to create business opportunities considering increasing uncertainties and emergent systemic behaviors where humans and machines seamlessly cooperate
    • …
    corecore