6,565 research outputs found

    A Latent Parameter Node-Centric Model for Spatial Networks

    Get PDF
    Spatial networks, in which nodes and edges are embedded in space, play a vital role in the study of complex systems. For example, many social networks attach geo-location information to each user, allowing the study of not only topological interactions between users, but spatial interactions as well. The defining property of spatial networks is that edge distances are associated with a cost, which may subtly influence the topology of the network. However, the cost function over distance is rarely known, thus developing a model of connections in spatial networks is a difficult task. In this paper, we introduce a novel model for capturing the interaction between spatial effects and network structure. Our approach represents a unique combination of ideas from latent variable statistical models and spatial network modeling. In contrast to previous work, we view the ability to form long/short-distance connections to be dependent on the individual nodes involved. For example, a node's specific surroundings (e.g. network structure and node density) may make it more likely to form a long distance link than other nodes with the same degree. To capture this information, we attach a latent variable to each node which represents a node's spatial reach. These variables are inferred from the network structure using a Markov Chain Monte Carlo algorithm. We experimentally evaluate our proposed model on 4 different types of real-world spatial networks (e.g. transportation, biological, infrastructure, and social). We apply our model to the task of link prediction and achieve up to a 35% improvement over previous approaches in terms of the area under the ROC curve. Additionally, we show that our model is particularly helpful for predicting links between nodes with low degrees. In these cases, we see much larger improvements over previous models

    A complex network approach to urban growth

    Get PDF
    The economic geography can be viewed as a large and growing network of interacting activities. This fundamental network structure and the large size of such systems makes complex networks an attractive model for its analysis. In this paper we propose the use of complex networks for geographical modeling and demonstrate how such an application can be combined with a cellular model to produce output that is consistent with large scale regularities such as power laws and fractality. Complex networks can provide a stringent framework for growth dynamic modeling where concepts from e.g. spatial interaction models and multiplicative growth models can be combined with the flexible representation of land and behavior found in cellular automata and agent-based models. In addition, there exists a large body of theory for the analysis of complex networks that have direct applications for urban geographic problems. The intended use of such models is twofold: i) to address the problem of how the empirically observed hierarchical structure of settlements can be explained as a stationary property of a stochastic evolutionary process rather than as equilibrium points in a dynamics, and, ii) to improve the prediction quality of applied urban modeling.evolutionary economics, complex networks, urban growth

    Traveling Trends: Social Butterflies or Frequent Fliers?

    Full text link
    Trending topics are the online conversations that grab collective attention on social media. They are continually changing and often reflect exogenous events that happen in the real world. Trends are localized in space and time as they are driven by activity in specific geographic areas that act as sources of traffic and information flow. Taken independently, trends and geography have been discussed in recent literature on online social media; although, so far, little has been done to characterize the relation between trends and geography. Here we investigate more than eleven thousand topics that trended on Twitter in 63 main US locations during a period of 50 days in 2013. This data allows us to study the origins and pathways of trends, how they compete for popularity at the local level to emerge as winners at the country level, and what dynamics underlie their production and consumption in different geographic areas. We identify two main classes of trending topics: those that surface locally, coinciding with three different geographic clusters (East coast, Midwest and Southwest); and those that emerge globally from several metropolitan areas, coinciding with the major air traffic hubs of the country. These hubs act as trendsetters, generating topics that eventually trend at the country level, and driving the conversation across the country. This poses an intriguing conjecture, drawing a parallel between the spread of information and diseases: Do trends travel faster by airplane than over the Internet?Comment: Proceedings of the first ACM conference on Online social networks, pp. 213-222, 201

    Popularity versus Similarity in Growing Networks

    Full text link
    Popularity is attractive -- this is the formula underlying preferential attachment, a popular explanation for the emergence of scaling in growing networks. If new connections are made preferentially to more popular nodes, then the resulting distribution of the number of connections that nodes have follows power laws observed in many real networks. Preferential attachment has been directly validated for some real networks, including the Internet. Preferential attachment can also be a consequence of different underlying processes based on node fitness, ranking, optimization, random walks, or duplication. Here we show that popularity is just one dimension of attractiveness. Another dimension is similarity. We develop a framework where new connections, instead of preferring popular nodes, optimize certain trade-offs between popularity and similarity. The framework admits a geometric interpretation, in which popularity preference emerges from local optimization. As opposed to preferential attachment, the optimization framework accurately describes large-scale evolution of technological (Internet), social (web of trust), and biological (E.coli metabolic) networks, predicting the probability of new links in them with a remarkable precision. The developed framework can thus be used for predicting new links in evolving networks, and provides a different perspective on preferential attachment as an emergent phenomenon

    Sustaining the Internet with Hyperbolic Mapping

    Full text link
    The Internet infrastructure is severely stressed. Rapidly growing overheads associated with the primary function of the Internet---routing information packets between any two computers in the world---cause concerns among Internet experts that the existing Internet routing architecture may not sustain even another decade. Here we present a method to map the Internet to a hyperbolic space. Guided with the constructed map, which we release with this paper, Internet routing exhibits scaling properties close to theoretically best possible, thus resolving serious scaling limitations that the Internet faces today. Besides this immediate practical viability, our network mapping method can provide a different perspective on the community structure in complex networks

    Link Prediction in Complex Networks: A Survey

    Full text link
    Link prediction in complex networks has attracted increasing attention from both physical and computer science communities. The algorithms can be used to extract missing information, identify spurious interactions, evaluate network evolving mechanisms, and so on. This article summaries recent progress about link prediction algorithms, emphasizing on the contributions from physical perspectives and approaches, such as the random-walk-based methods and the maximum likelihood methods. We also introduce three typical applications: reconstruction of networks, evaluation of network evolving mechanism and classification of partially labelled networks. Finally, we introduce some applications and outline future challenges of link prediction algorithms.Comment: 44 pages, 5 figure
    corecore