37,042 research outputs found

    Performance Comparison of Phase Change Materials and Metal-Insulator Transition Materials for Direct Current and Radio Frequency Switching Applications

    Get PDF
    Advanced understanding of the physics makes phase change materials (PCM) and metal-insulator transition (MIT) materials great candidates for direct current (DC) and radio frequency (RF) switching applications. In the literature, germanium telluride (GeTe), a PCM, and vanadium dioxide (VO2), an MIT material have been widely investigated for DC and RF switching applications due to their remarkable contrast in their OFF/ON state resistivity values. In this review, innovations in design, fabrication, and characterization associated with these PCM and MIT material-based RF switches, have been highlighted and critically reviewed from the early stage to the most recent works. We initially report on the growth of PCM and MIT materials and then discuss their DC characteristics. Afterwards, novel design approaches and notable fabrication processes; utilized to improve switching performance; are discussed and reviewed. Finally, a brief vis-á-vis comparison of resistivity, insertion loss, isolation loss, power consumption, RF power handling capability, switching speed, and reliability is provided to compare their performance to radio frequency microelectromechanical systems (RF MEMS) switches; which helps to demonstrate the current state-of-the-art, as well as insight into their potential in future applications

    A Novel Transparent UWB Antenna for Photovoltaic Solar Panel Integration and RF Energy Harvesting

    Get PDF
    A novel transparent ultra-wideband antenna for photovoltaic solar-panel integration and RF energy harvesting is proposed in this paper. Since the approval by the Federal Communications Committee (FCC) in 2002, much research has been undertaken on UWB technology, especially for wireless communications. However, in the last decade, UWB has also been proposed as a power harvester. In this paper, a transparent cone-top-tapered slot antenna covering the frequency range from 2.2 to 12.1 GHz is designed and fabricated to provide UWB communications whilst integrated onto solar panels as well as harvest electromagnetic waves from free space and convert them into electrical energy. The antenna when sandwiched between an a-Si solar panel and glass is able to demonstrate a quasi omni-directional pattern that is characteristic of a UWB. The antenna when connected to a 2.55-GHz rectifier is able to produce 18-mV dc in free space and 4.4-mV dc on glass for an input power of 10 dBm at a distance of 5 cm. Although the antenna presented in this paper is a UWB antenna, only an operating range of 2.49 to 2.58 GHz for power scavenging is possible due to the limitation of the narrowband rectifier used for the study

    High Dynamic Range RF Front End with Noise Cancellation and Linearization for WiMAX Receivers

    Get PDF
    This research deals with verification of the high dynamic range for a heterodyne radio frequency (RF) front end. A 2.6 GHz RF front end is designed and implemented in a hybrid microwave integrated circuit (HMIC) for worldwide interoperability for microwave access (WiMAX) receivers. The heterodyne RF front end consists of a low-noise amplifier (LNA) with noise cancellation, an RF bandpass filter (BPF), a downconverter with linearization, and an intermediate frequency (IF) BPF. A noise canceling technique used in the low-noise amplifier eliminates a thermal noise and then reduces the noise figure (NF) of the RF front end by 0.9 dB. Use of a downconverter with diode linearizer also compensates for gain compression, which increases the input-referred third-order intercept point (IIP3) of the RF front end by 4.3 dB. The proposed method substantially increases the spurious-free dynamic range (DRf) of the RF front end by 3.5 dB

    Tunable Balun Low-Noise Amplifier in 65nm CMOS Technology

    Get PDF
    The presented paper includes the design and implementation of a 65 nm CMOS low-noise amplifier (LNA) based on inductive source degeneration. The amplifier is realized with an active balun enabling a single-ended input which is an important requirement for low-cost system on chip implementations. The LNA has a tunable bandpass characteristics from 4.7 GHz up to 5.6 GHz and a continuously tunable gain from 22 dB down to 0 dB, which enables the required flexibility for multi-standard, multi-band receiver architectures. The gain and band tuning is realized with an optimized tunable active resistor in parallel to a tunable L-C tank amplifier load. The amplifier achieves an IIP3 linearity of -8dBm and a noise figure of 2.7 dB at the highest gain and frequency setting with a low power consumption of 10 mW. The high flexibility of the proposed LNA structure together with the overall good performance makes it well suited for future multi-standard low-cost receiver front-ends

    Wi-PoS : a low-cost, open source ultra-wideband (UWB) hardware platform with long range sub-GHz backbone

    Get PDF
    Ultra-wideband (UWB) localization is one of the most promising approaches for indoor localization due to its accurate positioning capabilities, immunity against multipath fading, and excellent resilience against narrowband interference. However, UWB researchers are currently limited by the small amount of feasible open source hardware that is publicly available. We developed a new open source hardware platform, Wi-PoS, for precise UWB localization based on Decawave’s DW1000 UWB transceiver with several unique features: support of both long-range sub-GHz and 2.4 GHz back-end communication between nodes, flexible interfacing with external UWB antennas, and an easy implementation of the MAC layer with the Time-Annotated Instruction Set Computer (TAISC) framework. Both hardware and software are open source and all parameters of the UWB ranging can be adjusted, calibrated, and analyzed. This paper explains the main specifications of the hardware platform, illustrates design decisions, and evaluates the performance of the board in terms of range, accuracy, and energy consumption. The accuracy of the ranging system was below 10 cm in an indoor lab environment at distances up to 5 m, and accuracy smaller than 5 cm was obtained at 50 and 75 m in an outdoor environment. A theoretical model was derived for predicting the path loss and the influence of the most important ground reflection. At the same time, the average energy consumption of the hardware was very low with only 81 mA for a tag node and 63 mA for the active anchor nodes, permitting the system to run for several days on a mobile battery pack and allowing easy and fast deployment on sites without an accessible power supply or backbone network. The UWB hardware platform demonstrated flexibility, easy installation, and low power consumption

    Push-pull modulated analog photonic link with enhanced sfdr

    Get PDF
    We demonstrate an analog photonic link (APL) with a high multioctave spurious-free dynamic range (SFDR) of 120 dB.Hz2/3 at the frequency of 2.50 GHz. The APL consists of a pair of distributed-feedback laser diodes (DFB LDs), modulated in a push-pull manner, and a balanced photodetector aiming at suppressing the second-order intermodulation distortion (IMD2). At the frequency of 2.50 GHz, an IMD2 suppression of 40 dB, relative to the case of a single arm APL with one laser, is obtained. In a wide frequency range of 600 MHz (2.60 to 3.20 GHz), an improvement of 5 to 18 dB of the second-order SFDR relative to the single arm APL has been achieved.\ud \u

    Harmonic balance surrogate-based immunity modeling of a nonlinear analog circuit

    Get PDF
    A novel harmonic balance surrogate-based technique to create fast and accurate behavioral models predicting, in the early design stage, the performance of nonlinear analog devices during immunity tests is presented. The obtained immunity model hides the real netlist, reduces the simulation time, and avoids expensive and time-consuming measurements after tape-out, while still providing high accuracy. The model can easily be integrated into a circuit simulator together with additional subcircuits, e.g., board and package models, as such allowing to efficiently reproduce complete immunity test setups during the early design stage and without disclosing any intellectual property. The novel method is validated by means of application to an industrial case study, being an automotive voltage regulator, clearly showing the technique's capabilities and practical advantages
    corecore