25 research outputs found

    Enhanced heart rate prediction model using damped least-squares algorithm

    Get PDF
    Monitoring a patient’s vital signs is considered one of the most challenging problems in telehealth systems, especially when patients reside in remote locations. Companies now use IoT devices such as wearable devices to participate in telehealth systems. However, the steady adoption of wearables can result in a significant increase in the volume of data being collected and transmitted. As these devices run on limited battery power, they can run out of power quickly due to the high processing requirements of the device for data collection and transmission. Given the importance of medical data, it is imperative that all transmitted data adhere to strict integrity and availability requirements. Reducing the volume of healthcare data and the frequency of transmission can improve a device’s battery life via an inference algorithm. Furthermore, this approach creates issues for improving transmission metrics related to accuracy and efficiency, which are traded-off against each other, with increasing accuracy reducing efficiency. This paper demonstrates that machine learning (ML) can be used to overcome the trade-off problem. The damped least-squares algorithm (DLSA) is used to enhance both metrics by taking fewer samples for transmission whilst maintaining accuracy. The algorithm is tested with a standard heart rate dataset to compare the metrics. The results showed that the DLSA provides the best performance, with an efficiency of 3.33 times for reduced sample data size and an accuracy of 95.6 %, with similar accuracies observed in seven different sampling cases adopted for testing that demonstrate improved efficiency. This proposed method significantly improve both metrics using ML without sacrificing one metric over the other compared to existing methods with high efficiency

    Protection and efficient management of big health data in cloud environment

    Full text link
    University of Technology Sydney. Faculty of Engineering and Information Technology.Healthcare data has become a great concern in the academic world and in industry. The deployment of electronic health records (EHRs) and healthcare-related services on cloud platforms will reduce the cost and complexity of handling and integrating medical records while improving efficiency and accuracy. To make effective use of advanced features such as high availability, reliability, and scalability of Cloud services, EHRs have to be stored in the clouds. By exposing EHRs in an outsourced environment, however, a number of serious issues related to data security and privacy, distribution and processing such as the loss of the controllability, different data formats and sizes, the leakage of sensitive information in processing, sensitive-delay requirements has been naturally raised. Many attempts have been made to address the above concerns, but most of the attempts tackled only some aspects of the problem. Encryption mechanisms can resolve the data security and privacy requirements but introduce intensive computing overheads as well as complexity in key distribution. Data is not guaranteed being protected when it is moved from one cloud to another because clouds may not use equivalent protection schemes. Sensitive data is being processed at only private clouds without sufficient resources. Consequently, Cloud computing has not been widely adopted by healthcare providers and users. Protecting and managing health data efficiently in many aspects is still an open question for current research. In this dissertation, we investigate data security and efficient management of big health data in cloud environments. Regarding data security, we establish an active data protection framework to protect data; we investigate a new approach for data mobility; we propose trusted evaluation for cloud resources in processing sensitive data. For efficient management, we investigate novel schemes and models in both Cloud computing and Fog computing for data distribution and data processing to handle the rapid growth of data, higher security on demand, and delay requirements. The novelty of this work lies in the novel data mobility management model for data protection, the efficient distribution scheme for a large-scale of EHRs, and the trust-based scheme in security and processing. The contributions of this thesis can be summarized according to data security and efficient data management. On data security, we propose a data mobility management model to protect data when it is stored and moved in clouds. We suggest a trust-based scheduling scheme for big data processing with MapReduce to fulfil both privacy and performance issues in a cloud environment. • The data mobility management introduces a new location data structure into an active data framework, a Location Registration Database (LRD), protocols for establishing a clone supervisor and a Mobility Service (MS) to handle security and privacy requirements effectively. The model proposes a novel security approach for data mobility and leads to the introduction of a new Data Mobility as a Service (DMaaS) in the Cloud. • The Trust-based scheduling scheme investigates a novel composite trust metric and a real-time trust evaluation for cloud resources to provide the highest trust execution on sensitive data. The proposed scheme introduces a new approach for big data processing to meet with high security requirements. On the efficient data management, we propose a novel Hash-Based File Clustering (HBFC) scheme and data replication management model to distribute, store and retrieve EHRs efficiently. We propose a data protection model and a task scheduling scheme which is Region-based for Fog and Cloud to address security and local performance issues. • The HBFC scheme innovatively utilizes hash functions to cluster files in defined clusters such that data can be stored and retrieved quickly while maintaining the workload balance efficiently. The scheme introduces a new clustering mechanism in managing a large-scale of EHRs to deliver healthcare services effectively in the cloud environment. • The trust-based scheduling model uses the proposed trust metric for task scheduling with MapReduce. It not only provides maximum trust execution but also increases resource utilization significantly. The model suggests a new trust-oriented scheduling mechanism between tasks and resources with MapReduce. • We introduce a novel concept “Region” in Fog computing to handle the data security and local performance issues effectively. The proposed model provides a novel Fog-based Region approach to handle security and local performance requirements. We implement and evaluate our proposed models and schemes intensively based on both real infrastructures and simulators. The outcomes demonstrate the feasibility and the efficiency of our research in this thesis. By proposing innovative concepts, metrics, algorithms, models, and services, the significant contributions of this thesis enable both healthcare providers and users to adopt cloud services widely, and allow significant improvements in providing better healthcare services

    Indoor navigation for the visually impaired : enhancements through utilisation of the Internet of Things and deep learning

    Get PDF
    Wayfinding and navigation are essential aspects of independent living that heavily rely on the sense of vision. Walking in a complex building requires knowing exact location to find a suitable path to the desired destination, avoiding obstacles and monitoring orientation and movement along the route. People who do not have access to sight-dependent information, such as that provided by signage, maps and environmental cues, can encounter challenges in achieving these tasks independently. They can rely on assistance from others or maintain their independence by using assistive technologies and the resources provided by smart environments. Several solutions have adapted technological innovations to combat navigation in an indoor environment over the last few years. However, there remains a significant lack of a complete solution to aid the navigation requirements of visually impaired (VI) people. The use of a single technology cannot provide a solution to fulfil all the navigation difficulties faced. A hybrid solution using Internet of Things (IoT) devices and deep learning techniques to discern the patterns of an indoor environment may help VI people gain confidence to travel independently. This thesis aims to improve the independence and enhance the journey of VI people in an indoor setting with the proposed framework, using a smartphone. The thesis proposes a novel framework, Indoor-Nav, to provide a VI-friendly path to avoid obstacles and predict the user s position. The components include Ortho-PATH, Blue Dot for VI People (BVIP), and a deep learning-based indoor positioning model. The work establishes a novel collision-free pathfinding algorithm, Orth-PATH, to generate a VI-friendly path via sensing a grid-based indoor space. Further, to ensure correct movement, with the use of beacons and a smartphone, BVIP monitors the movements and relative position of the moving user. In dark areas without external devices, the research tests the feasibility of using sensory information from a smartphone with a pre-trained regression-based deep learning model to predict the user s absolute position. The work accomplishes a diverse range of simulations and experiments to confirm the performance and effectiveness of the proposed framework and its components. The results show that Indoor-Nav is the first type of pathfinding algorithm to provide a novel path to reflect the needs of VI people. The approach designs a path alongside walls, avoiding obstacles, and this research benchmarks the approach with other popular pathfinding algorithms. Further, this research develops a smartphone-based application to test the trajectories of a moving user in an indoor environment

    Quality of Service Oriented Access Point Selection Framework for Large Wi-Fi Networks

    Get PDF
    This paper addresses the problem of Access Point (AP) selection in large Wi-Fi networks. Unlike current solutions that rely on Received Signal Strength (RSS) to determine the best AP that could serve a wireless user’s request, we propose a novel framework that considers the Quality of Service (QoS) requirements of the user’s data flow. The proposed framework relies on a function reflecting the suitability of a Wi-Fi AP to satisfy the QoS requirements of the data flow. The framework takes advantage of the flexibility and centralised nature of Software Defined Networking (SDN). A performance comparison of this algorithm developed through an SDN-based simulator shows significant achievements against other state of the art solutions in terms of provided QoS and improved wireless network capacity

    Rescue Method Based on V2X Communication and Human Pose Estimation

    Get PDF
    Advances in science and technologies not only improve our workflow and increase the quality of life but also change the way emergency rescue operates. The eCall system is the evidence of such a new evolutionary step. However, studies are not available about 'smart' rescue methods of independent human (neither pedestrian nor a driver) who turned out to be on the roadside for one or another reason and need first aid. The research questions were how to increase the quality and speed of the rescue process by using Vehicle-to-Everything (V2X) communication and the human pose estimation function and how to increase the reliability of transmitted information. In the article, we presented an overview about the current state-of-the-art in human pose estimation technology, discussed current methods of rescue, concept, and disadvantages of the current approach, and finally proposed our own method of rescue based on blending of vehicular communication networks with advancements in human pose estimation function. The research novelty in a scientific sense is a concept of a new information management method, where Autonomous Vehicles (AVs) act as witnesses itself without any human intervention. An example of SOS Packet Format has been designed. We proposed a novel view on the future ambulance

    A fog computing solution for context-based privacy leakage detection for android healthcare devices

    Get PDF
    Intelligent medical service system integrates wireless internet of things (WIoT), including medical sensors, wireless communications, and middleware techniques, so as to collect and analyze patients' data to examine their physical conditions by many personal health devices (PHDs) in real time. However, large amount of malicious codes on the Android system can compromise consumers' privacy, and further threat the hospital management or even the patients' health. Furthermore, this sensor-rich system keeps generating large amounts of data and saturates the middleware system. To address these challenges, we propose a fog computing security and privacy protection solution. Specifically, first, we design the security and privacy protection framework based on the fog computing to improve tele-health and tele-medicine infrastructure. Then, we propose a context-based privacy leakage detection method based on the combination of dynamic and static information. Experimental results show that the proposed method can achieve higher detection accuracy and lower energy consumption compared with other state-of-art methods.This work was supported by the National Natural Science Foundation of China (General Program) under Grant No.61572253, the 13th Five-Year Plan Equipment Pre-Research Projects Fund under Grant No.61402420101HK02001, and the Aviation Science Fund under Grant No. 2016ZC52030

    Exploring Lightweight Deep Learning Solution for Malware Detection in IoT Constraint Environment

    Get PDF
    : The present era is facing the industrial revolution. Machine-to-Machine (M2M) communication paradigm is becoming prevalent. Resultantly, the computational capabilities are being embedded in everyday objects called things. When connected to the internet, these things create an Internet of Things (IoT). However, the things are resource-constrained devices that have limited computational power. The connectivity of the things with the internet raises the challenges of the security. The user sensitive information processed by the things is also susceptible to the trusability issues. Therefore, the proliferation of cybersecurity risks and malware threat increases the need for enhanced security integration. This demands augmenting the things with state-of-the-art deep learning models for enhanced detection and protection of the user data. Existingly, the deep learning solutions are overly complex, and often overfitted for the given problem. In this research, our primary objective is to investigate a lightweight deep-learning approach maximizes the accuracy scores with lower computational costs to ensure the applicability of real-time malware monitoring in constrained IoT devices. We used state-of-the-art Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), and Bi-directional LSTM deep learning algorithm on a vanilla configuration trained on a standard malware dataset. The results of the proposed approach show that the simple deep neural models having single dense layer and a few hundred trainable parameters can eliminate the model overfitting and achieve up to 99.45% accuracy, outperforming the overly complex deep learning models.publishedVersio
    corecore