115 research outputs found

    Prediction based task scheduling in distributed computing

    Full text link

    New Structured Matrix Methods for Real and Complex Polynomial Root-finding

    Full text link
    We combine the known methods for univariate polynomial root-finding and for computations in the Frobenius matrix algebra with our novel techniques to advance numerical solution of a univariate polynomial equation, and in particular numerical approximation of the real roots of a polynomial. Our analysis and experiments show efficiency of the resulting algorithms.Comment: 18 page

    Holonomic Techniques, Periods, and Decision Problems (Invited Talk)

    Get PDF

    Solving parametric systems of polynomial equations over the reals through Hermite matrices

    Full text link
    We design a new algorithm for solving parametric systems having finitely many complex solutions for generic values of the parameters. More precisely, let f=(f1,,fm)Q[y][x]f = (f_1, \ldots, f_m)\subset \mathbb{Q}[y][x] with y=(y1,,yt)y = (y_1, \ldots, y_t) and x=(x1,,xn)x = (x_1, \ldots, x_n), VCt+nV\subset \mathbb{C}^{t+n} be the algebraic set defined by ff and π\pi be the projection (y,x)y(y, x) \to y. Under the assumptions that ff admits finitely many complex roots for generic values of yy and that the ideal generated by ff is radical, we solve the following problem. On input ff, we compute semi-algebraic formulas defining semi-algebraic subsets S1,,SlS_1, \ldots, S_l of the yy-space such that i=1lSi\cup_{i=1}^l S_i is dense in Rt\mathbb{R}^t and the number of real points in Vπ1(η)V\cap \pi^{-1}(\eta) is invariant when η\eta varies over each SiS_i. This algorithm exploits properties of some well chosen monomial bases in the algebra Q(y)[x]/I\mathbb{Q}(y)[x]/I where II is the ideal generated by ff in Q(y)[x]\mathbb{Q}(y)[x] and the specialization property of the so-called Hermite matrices. This allows us to obtain compact representations of the sets SiS_i by means of semi-algebraic formulas encoding the signature of a symmetric matrix. When ff satisfies extra genericity assumptions, we derive complexity bounds on the number of arithmetic operations in Q\mathbb{Q} and the degree of the output polynomials. Let dd be the maximal degree of the fif_i's and D=n(d1)dnD = n(d-1)d^n, we prove that, on a generic f=(f1,,fn)f=(f_1,\ldots,f_n), one can compute those semi-algebraic formulas with O ((t+Dt)23tn2t+1d3nt+2(n+t)+1)O^~( \binom{t+D}{t}2^{3t}n^{2t+1} d^{3nt+2(n+t)+1}) operations in Q\mathbb{Q} and that the polynomials involved have degree bounded by DD. We report on practical experiments which illustrate the efficiency of our algorithm on generic systems and systems from applications. It allows us to solve problems which are out of reach of the state-of-the-art

    HPC-GAP: engineering a 21st-century high-performance computer algebra system

    Get PDF
    Symbolic computation has underpinned a number of key advances in Mathematics and Computer Science. Applications are typically large and potentially highly parallel, making them good candidates for parallel execution at a variety of scales from multi-core to high-performance computing systems. However, much existing work on parallel computing is based around numeric rather than symbolic computations. In particular, symbolic computing presents particular problems in terms of varying granularity and irregular task sizes thatdo not match conventional approaches to parallelisation. It also presents problems in terms of the structure of the algorithms and data. This paper describes a new implementation of the free open-source GAP computational algebra system that places parallelism at the heart of the design, dealing with the key scalability and cross-platform portability problems. We provide three system layers that deal with the three most important classes of hardware: individual shared memory multi-core nodes, mid-scale distributed clusters of (multi-core) nodes, and full-blown HPC systems, comprising large-scale tightly-connected networks of multi-core nodes. This requires us to develop new cross-layer programming abstractions in the form of new domain-specific skeletons that allow us to seamlessly target different hardware levels. Our results show that, using our approach, we can achieve good scalability and speedups for two realistic exemplars, on high-performance systems comprising up to 32,000 cores, as well as on ubiquitous multi-core systems and distributed clusters. The work reported here paves the way towards full scale exploitation of symbolic computation by high-performance computing systems, and we demonstrate the potential with two major case studies

    Gröbner Bases of Ideals Invariant under a Commutative Group: the Non-Modular Case

    Get PDF
    International audienceWe propose efficient algorithms to compute the Gröbner basis of an ideal Ik[x1,,xn]I\subset k[x_1,\dots,x_n] globally invariant under the action of a commutative matrix group GG, in the non-modular case (where char(k)char(k) doesn't divide G|G|). The idea is to simultaneously diagonalize the matrices in GG, and apply a linear change of variables on II corresponding to the base-change matrix of this diagonalization. We can now suppose that the matrices acting on II are diagonal. This action induces a grading on the ring R=k[x1,,xn]R=k[x_1,\dots,x_n], compatible with the degree, indexed by a group related to GG, that we call GG-degree. The next step is the observation that this grading is maintained during a Gröbner basis computation or even a change of ordering, which allows us to split the Macaulay matrices into G|G| submatrices of roughly the same size. In the same way, we are able to split the canonical basis of R/IR/I (the staircase) if II is a zero-dimensional ideal. Therefore, we derive \emph{abelian} versions of the classical algorithms F4F_4, F5F_5 or FGLM. Moreover, this new variant of F4/F5F_4/F_5 allows complete parallelization of the linear algebra steps, which has been successfully implemented. On instances coming from applications (NTRU crypto-system or the Cyclic-n problem), a speed-up of more than 400 can be obtained. For example, a Gröbner basis of the Cyclic-11 problem can be solved in less than 8 hours with this variant of F4F_4. Moreover, using this method, we can identify new classes of polynomial systems that can be solved in polynomial time
    corecore