9 research outputs found

    WoX+: A Meta-Model-Driven Approach to Mine User Habits and Provide Continuous Authentication in the Smart City

    Get PDF
    The literature is rich in techniques and methods to perform Continuous Authentication (CA) using biometric data, both physiological and behavioral. As a recent trend, less invasive methods such as the ones based on context-aware recognition allows the continuous identification of the user by retrieving device and app usage patterns. However, a still uncovered research topic is to extend the concepts of behavioral and context-aware biometric to take into account all the sensing data provided by the Internet of Things (IoT) and the smart city, in the shape of user habits. In this paper, we propose a meta-model-driven approach to mine user habits, by means of a combination of IoT data incoming from several sources such as smart mobility, smart metering, smart home, wearables and so on. Then, we use those habits to seamlessly authenticate users in real time all along the smart city when the same behavior occurs in different context and with different sensing technologies. Our model, which we called WoX+, allows the automatic extraction of user habits using a novel Artificial Intelligence (AI) technique focused on high-level concepts. The aim is to continuously authenticate the users using their habits as behavioral biometric, independently from the involved sensing hardware. To prove the effectiveness of WoX+ we organized a quantitative and qualitative evaluation in which 10 participants told us a spending habit they have involving the use of IoT. We chose the financial domain because it is ubiquitous, it is inherently multi-device, it is rich in time patterns, and most of all it requires a secure authentication. With the aim of extracting the requirement of such a system, we also asked the cohort how they expect WoX+ will use such habits to securely automatize payments and identify them in the smart city. We discovered that WoX+ satisfies most of the expected requirements, particularly in terms of unobtrusiveness of the solution, in contrast with the limitations observed in the existing studies. Finally, we used the responses given by the cohorts to generate synthetic data and train our novel AI block. Results show that the error in reconstructing the habits is acceptable: Mean Squared Error Percentage (MSEP) 0.04%

    Hard Exudate Extraction from Fundus Images using Watershed Transform

    Get PDF
    Diabetic Retinopathy is a medical condition which affects the eyes due to increased blood sugar levels. This is characterized by presence of exudates - deposits of lipids in the posterior pole of the retina. If this ailment is not treated in earlier stages these deposits can cause blurred vision or even permanent blindness. This paper concentrates on extraction of hard exudates and optic disc from the retinal images of eyes using Marker based Watershed approach, which uses the minima imposition method to create mask and marker. The varying contrast across all the images has been taken care by a non-linear equation. Once these bright objects have been extracted from fundus images, area estimation is performed to eliminate the optic disk, thus retaining only exudates. These images have been procured from publicly available databases. Though software systems are easy to install, they prove to be expensive in terms of time and cost; thus this method has also been implemented on FPGA for an on-chip solution. The precision and sensitivity for exudate extraction sans optic disk are found to be 92.4% and 83.78% respectively.  Though other techniques exist which provide better accuracy, the method described in this paper is found to be hardware friendly in comparison with other proven methods. Few steps of the algorithm developed are implemented on FPGA to provide an embedded system approach to this work, considering the advantages of a hardware-software combination

    The Four-C Framework for High Capacity Ultra-Low Latency in 5G Networks: A Review

    Get PDF
    Network latency will be a critical performance metric for the Fifth Generation (5G) networks expected to be fully rolled out in 2020 through the IMT-2020 project. The multi-user multiple-input multiple-output (MU-MIMO) technology is a key enabler for the 5G massive connectivity criterion, especially from the massive densification perspective. Naturally, it appears that 5G MU-MIMO will face a daunting task to achieve an end-to-end 1 ms ultra-low latency budget if traditional network set-ups criteria are strictly adhered to. Moreover, 5G latency will have added dimensions of scalability and flexibility compared to prior existing deployed technologies. The scalability dimension caters for meeting rapid demand as new applications evolve. While flexibility complements the scalability dimension by investigating novel non-stacked protocol architecture. The goal of this review paper is to deploy ultra-low latency reduction framework for 5G communications considering flexibility and scalability. The Four (4) C framework consisting of cost, complexity, cross-layer and computing is hereby analyzed and discussed. The Four (4) C framework discusses several emerging new technologies of software defined network (SDN), network function virtualization (NFV) and fog networking. This review paper will contribute significantly towards the future implementation of flexible and high capacity ultra-low latency 5G communications

    Review of Recent Trends

    Get PDF
    This work was partially supported by the European Regional Development Fund (FEDER), through the Regional Operational Programme of Centre (CENTRO 2020) of the Portugal 2020 framework, through projects SOCA (CENTRO-01-0145-FEDER-000010) and ORCIP (CENTRO-01-0145-FEDER-022141). Fernando P. Guiomar acknowledges a fellowship from “la Caixa” Foundation (ID100010434), code LCF/BQ/PR20/11770015. Houda Harkat acknowledges the financial support of the Programmatic Financing of the CTS R&D Unit (UIDP/00066/2020).MIMO-OFDM is a key technology and a strong candidate for 5G telecommunication systems. In the literature, there is no convenient survey study that rounds up all the necessary points to be investigated concerning such systems. The current deeper review paper inspects and interprets the state of the art and addresses several research axes related to MIMO-OFDM systems. Two topics have received special attention: MIMO waveforms and MIMO-OFDM channel estimation. The existing MIMO hardware and software innovations, in addition to the MIMO-OFDM equalization techniques, are discussed concisely. In the literature, only a few authors have discussed the MIMO channel estimation and modeling problems for a variety of MIMO systems. However, to the best of our knowledge, there has been until now no review paper specifically discussing the recent works concerning channel estimation and the equalization process for MIMO-OFDM systems. Hence, the current work focuses on analyzing the recently used algorithms in the field, which could be a rich reference for researchers. Moreover, some research perspectives are identified.publishersversionpublishe

    Mobility Management in New Internet Architectures

    Get PDF
    The software integration with new network architectures via Software-Defined Networking (SDN) axis appears to be a major evolution of networks. While this paradigm was primarily developed for easy network setup, its ability to integrate services has also to be considered. Thus, the mobility service for which solutions have been proposed in conventional architectures by defining standardized protocols should be rethought in terms of SDN service. Mobile devices might use or move in SDN network. In this thesis, we proposed a new mobility management approach which called "SDN-Mobility" and has shown that SDN can be implemented without IP mobility protocol for providing mobility like as Proxy Mobile IPv6 (PMIPv6) that is the solution adopted by 3GPP, with some performance gain. However, PMIPv6 and SDN-Mobility have some packets loss during Mobile Node (MN) handover. Thus, in this thesis, we proposed a new paradigm based on caching function to improve the quality of transfer during handover. Caching policy cooperates with SDN controller for automatic buffering of the data during the handover. We proposed two caching policies that are compared through a performance analysis regarding the quality of transfer for the user and for the operator. This thesis also presented that SDN-Mobility with caching policy can be applied easily for mobility management in heterogeneous network architectures able to integrate the future Internet based on the Information-Centric Networking (ICN)

    Economie d'énergie en réseau filaire : ingénierie de trafic et mise en veille

    Get PDF
    Les travaux portent sur l’économie d’énergie dans le secteur des technologies de la communication et plus particulièrement dans les réseaux filaires. La technologie support de nos travaux est Ethernet qui historiquement utilisée dans les entreprises est actuellement déployée dans les réseaux d’accès et de coeur des opérateurs. Notre objectif est d’économiser de l’énergie par une mise en sommeil des liens Ethernet en s’appuyant sur des mécanismes standards aisément déployables. Pour ce faire nous modélisons et évaluons le mécanisme de mise en sommeil IEEE802.3az et confrontons notre modèle à l’expérimentation sur équipements. A partir du modèle de coût obtenu, nous proposons de mettre en place une ingénierie de trafic verte fonction de la charge qui dirige le trafic dans le réseau de façon à permettre aux liens de se mettre en phase de sommeil tout en préservant une qualité de service en évitant de créer des pertes de données dans le réseau par une concentration trop importante de trafic sur les liens. Nous distinguons plusieurs politiques d’ingénierie de complexité de mise en œuvre différentes, que nous évaluons dans plusieurs contextes. Les résultats obtenus permettent quasiment de doubler les gains obtenus par le standard IEEE802.3az. Nous étudions l’ingénierie dans un mode distribué à partir d’un protocole de routage, OSPF, et présentons une preuve de concept dans un mode centralisé avec une architecture SDN pour laquelle nous proposons l’utilisation du routage source par segment afin de réduire le trafic de contrôle

    Advances in Image Processing, Analysis and Recognition Technology

    Get PDF
    For many decades, researchers have been trying to make computers’ analysis of images as effective as the system of human vision is. For this purpose, many algorithms and systems have previously been created. The whole process covers various stages, including image processing, representation and recognition. The results of this work can be applied to many computer-assisted areas of everyday life. They improve particular activities and provide handy tools, which are sometimes only for entertainment, but quite often, they significantly increase our safety. In fact, the practical implementation of image processing algorithms is particularly wide. Moreover, the rapid growth of computational complexity and computer efficiency has allowed for the development of more sophisticated and effective algorithms and tools. Although significant progress has been made so far, many issues still remain, resulting in the need for the development of novel approaches

    Manufacturing Metrology

    Get PDF
    Metrology is the science of measurement, which can be divided into three overlapping activities: (1) the definition of units of measurement, (2) the realization of units of measurement, and (3) the traceability of measurement units. Manufacturing metrology originally implicates the measurement of components and inputs for a manufacturing process to assure they are within specification requirements. It can also be extended to indicate the performance measurement of manufacturing equipment. This Special Issue covers papers revealing novel measurement methodologies and instrumentations for manufacturing metrology from the conventional industry to the frontier of the advanced hi-tech industry. Twenty-five papers are included in this Special Issue. These published papers can be categorized into four main groups, as follows: Length measurement: covering new designs, from micro/nanogap measurement with laser triangulation sensors and laser interferometers to very-long-distance, newly developed mode-locked femtosecond lasers. Surface profile and form measurements: covering technologies with new confocal sensors and imagine sensors: in situ and on-machine measurements. Angle measurements: these include a new 2D precision level design, a review of angle measurement with mode-locked femtosecond lasers, and multi-axis machine tool squareness measurement. Other laboratory systems: these include a water cooling temperature control system and a computer-aided inspection framework for CMM performance evaluation
    corecore