3,889 research outputs found

    Multiresolution analysis using wavelet, ridgelet, and curvelet transforms for medical image segmentation

    Get PDF
    Copyright @ 2011 Shadi AlZubi et al. This article has been made available through the Brunel Open Access Publishing Fund.The experimental study presented in this paper is aimed at the development of an automatic image segmentation system for classifying region of interest (ROI) in medical images which are obtained from different medical scanners such as PET, CT, or MRI. Multiresolution analysis (MRA) using wavelet, ridgelet, and curvelet transforms has been used in the proposed segmentation system. It is particularly a challenging task to classify cancers in human organs in scanners output using shape or gray-level information; organs shape changes throw different slices in medical stack and the gray-level intensity overlap in soft tissues. Curvelet transform is a new extension of wavelet and ridgelet transforms which aims to deal with interesting phenomena occurring along curves. Curvelet transforms has been tested on medical data sets, and results are compared with those obtained from the other transforms. Tests indicate that using curvelet significantly improves the classification of abnormal tissues in the scans and reduce the surrounding noise

    3D medical volume segmentation using hybrid multiresolution statistical approaches

    Get PDF
    This article is available through the Brunel Open Access Publishing Fund. Copyright © 2010 S AlZu’bi and A Amira.3D volume segmentation is the process of partitioning voxels into 3D regions (subvolumes) that represent meaningful physical entities which are more meaningful and easier to analyze and usable in future applications. Multiresolution Analysis (MRA) enables the preservation of an image according to certain levels of resolution or blurring. Because of multiresolution quality, wavelets have been deployed in image compression, denoising, and classification. This paper focuses on the implementation of efficient medical volume segmentation techniques. Multiresolution analysis including 3D wavelet and ridgelet has been used for feature extraction which can be modeled using Hidden Markov Models (HMMs) to segment the volume slices. A comparison study has been carried out to evaluate 2D and 3D techniques which reveals that 3D methodologies can accurately detect the Region Of Interest (ROI). Automatic segmentation has been achieved using HMMs where the ROI is detected accurately but suffers a long computation time for its calculations

    A hybrid neuro--wavelet predictor for QoS control and stability

    Full text link
    For distributed systems to properly react to peaks of requests, their adaptation activities would benefit from the estimation of the amount of requests. This paper proposes a solution to produce a short-term forecast based on data characterising user behaviour of online services. We use \emph{wavelet analysis}, providing compression and denoising on the observed time series of the amount of past user requests; and a \emph{recurrent neural network} trained with observed data and designed so as to provide well-timed estimations of future requests. The said ensemble has the ability to predict the amount of future user requests with a root mean squared error below 0.06\%. Thanks to prediction, advance resource provision can be performed for the duration of a request peak and for just the right amount of resources, hence avoiding over-provisioning and associated costs. Moreover, reliable provision lets users enjoy a level of availability of services unaffected by load variations

    The Incremental Multiresolution Matrix Factorization Algorithm

    Full text link
    Multiresolution analysis and matrix factorization are foundational tools in computer vision. In this work, we study the interface between these two distinct topics and obtain techniques to uncover hierarchical block structure in symmetric matrices -- an important aspect in the success of many vision problems. Our new algorithm, the incremental multiresolution matrix factorization, uncovers such structure one feature at a time, and hence scales well to large matrices. We describe how this multiscale analysis goes much farther than what a direct global factorization of the data can identify. We evaluate the efficacy of the resulting factorizations for relative leveraging within regression tasks using medical imaging data. We also use the factorization on representations learned by popular deep networks, providing evidence of their ability to infer semantic relationships even when they are not explicitly trained to do so. We show that this algorithm can be used as an exploratory tool to improve the network architecture, and within numerous other settings in vision.Comment: Computer Vision and Pattern Recognition (CVPR) 2017, 10 page

    Wavelet Multiresolution Analysis of High-Frequency Asian FX Rates, Summer 1997

    Get PDF
    FX pricing processes are nonstationary and their frequency characteristics are time-dependent. Most do not conform to geometric Brownian motion, since they exhibit a scaling law with a Hurst exponent between zero and 0.5 and fractal dimensions between 1.5 and 2. This paper uses wavelet multiresolution analysis, with Haar wavelets, to analyze the nonstationarity (time-dependence) and self-similarity (scale-dependence) of intra-day Asian currency spot exchange rates. These are the ask and bid quotes of the currencies of eight Asian countries (Japan, Hong Kong, Indonesia, Malaysia, Philippines, Singapore, Taiwan, Thailand), and of Germany for comparison, for the crisis period May 1, 1998 - August 31, 1997, provided by Telerate (U.S. dollar is the numeraire). Their time-scale dependent spectra, which are localized in time, are observed in wavelet based scalograms. The FX increments can be characterized by the irregularity of their singularities. This degrees of irregularity are measured by homogeneous Hurst exponents. These critical exponents are used to identify the fractal dimension, relative stability and long term dependence of each Asian FX series. The invariance of each identified Hurst exponent is tested by comparing it at varying time and scale (frequency) resolutions. It appears that almost all FX markets show anti-persistent pricing behavior. The anchor currencies of the D-mark and Japanese Yen are ultra-efficient in the sense of being most anti-persistent. The Taiwanese dollar is the most persistent, and thus unpredictable, most likely due to administrative control. FX markets exhibit these non- linear, non-Gaussian dynamic structures, long term dependence, high kurtosis, and high degrees of non-informational (noise) trading, possibly because of frequent capital flows induced by non-synchronized regional business cycles, rapidly changing political risks, unexpected informational shocks to investment opportunities, and, in particular, investment strategies synthesizing interregional claims using cash swaps with different duration horizons.foreign exchange markets, anti-persistence, long-term dependence, multi-resolution analysis, wavelets, time-scale analysis, scaling laws, irregularity analysis, randomness, Asia

    Wavelet Multiresolution Analysis of High-Frequency FX Rates, Summer 1997

    Get PDF
    FX pricing processes are nonstationary and their frequency characteristics are time-dependent. Most do not conform to geometric Brownian motion, since they exhibit a scaling law with a Hurst exponent between zero and 0.5 and fractal dimensions between 1.5 and 2. This paper uses wavelet multiresolution analysis, with Haar wavelets, to analyze the nonstationarity (time-dependence) and self-similarity (scale-dependence) of intra-day Asian currency spot exchange rates.foreign exchange, anti-persistence, multi-resolution analysis, wavelets, Asia
    corecore