1,198,404 research outputs found

    A review of mobile robots: Concepts, methods, theoretical framework, and applications

    Full text link
    [EN] Humanoid robots, unmanned rovers, entertainment pets, drones, and so on are great examples of mobile robots. They can be distinguished from other robots by their ability to move autonomously, with enough intelligence to react and make decisions based on the perception they receive from the environment. Mobile robots must have some source of input data, some way of decoding that input, and a way of taking actions (including its own motion) to respond to a changing world. The need to sense and adapt to an unknown environment requires a powerful cognition system. Nowadays, there are mobile robots that can walk, run, jump, and so on like their biological counterparts. Several fields of robotics have arisen, such as wheeled mobile robots, legged robots, flying robots, robot vision, artificial intelligence, and so on, which involve different technological areas such as mechanics, electronics, and computer science. In this article, the world of mobile robots is explored including the new trends. These new trends are led by artificial intelligence, autonomous driving, network communication, cooperative work, nanorobotics, friendly human-robot interfaces, safe human-robot interaction, and emotion expression and perception. Furthermore, these news trends are applied to different fields such as medicine, health care, sports, ergonomics, industry, distribution of goods, and service robotics. These tendencies will keep going their evolution in the coming years.The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the Spanish Ministry of Economy and Competitiveness, which has funded the DPI2013-44227-R project.Rubio Montoya, FJ.; Valero ChuliĂĄ, FJ.; Llopis Albert, C. (2019). A review of mobile robots: Concepts, methods, theoretical framework, and applications. International Journal of Advanced Robotic Systems. 16(2):1-22. https://doi.org/10.1177/1729881419839596S122162Brunete, A., Ranganath, A., Segovia, S., de Frutos, J. P., Hernando, M., & Gambao, E. (2017). Current trends in reconfigurable modular robots design. International Journal of Advanced Robotic Systems, 14(3), 172988141771045. doi:10.1177/1729881417710457Bajracharya, M., Maimone, M. W., & Helmick, D. (2008). Autonomy for Mars Rovers: Past, Present, and Future. Computer, 41(12), 44-50. doi:10.1109/mc.2008.479Carsten, J., Rankin, A., Ferguson, D., & Stentz, A. (2007). Global Path Planning on Board the Mars Exploration Rovers. 2007 IEEE Aerospace Conference. doi:10.1109/aero.2007.352683Grotzinger, J. P., Crisp, J., Vasavada, A. R., Anderson, R. C., Baker, C. J., Barry, R., 
 Wiens, R. C. (2012). Mars Science Laboratory Mission and Science Investigation. Space Science Reviews, 170(1-4), 5-56. doi:10.1007/s11214-012-9892-2Khatib, O., Yeh, X., Brantner, G., Soe, B., Kim, B., Ganguly, S., 
 Creuze, V. (2016). Ocean One: A Robotic Avatar for Oceanic Discovery. IEEE Robotics & Automation Magazine, 23(4), 20-29. doi:10.1109/mra.2016.2613281Ceccarelli, M. (2012). Notes for a History of Grasping Devices. Mechanisms and Machine Science, 3-16. doi:10.1007/978-1-4471-4664-3_1Campion, G., & Chung, W. (2008). Wheeled Robots. Springer Handbook of Robotics, 391-410. doi:10.1007/978-3-540-30301-5_18Ferriere, L., Raucent, B., & Campion, G. (s. f.). Design of omnimobile robot wheels. Proceedings of IEEE International Conference on Robotics and Automation. doi:10.1109/robot.1996.509271Campion, G., Bastin, G., & Dandrea-Novel, B. (1996). Structural properties and classification of kinematic and dynamic models of wheeled mobile robots. IEEE Transactions on Robotics and Automation, 12(1), 47-62. doi:10.1109/70.481750BaƂchanowski, J. (2012). Mobile Wheel-Legged Robot: Researching of Suspension Leveling System. Mechanisms and Machine Science, 3-12. doi:10.1007/978-94-007-5125-5_1Williams, R. L., Carter, B. E., Gallina, P., & Rosati, G. (2002). Dynamic model with slip for wheeled omnidirectional robots. IEEE Transactions on Robotics and Automation, 18(3), 285-293. doi:10.1109/tra.2002.1019459Chan, R. P. M., Stol, K. A., & Halkyard, C. R. (2013). Review of modelling and control of two-wheeled robots. Annual Reviews in Control, 37(1), 89-103. doi:10.1016/j.arcontrol.2013.03.004Kim, H., & Kim, B. K. (2014). Online Minimum-Energy Trajectory Planning and Control on a Straight-Line Path for Three-Wheeled Omnidirectional Mobile Robots. IEEE Transactions on Industrial Electronics, 61(9), 4771-4779. doi:10.1109/tie.2013.2293706Carbone, G., & Ceccarelli, M. (2005). Legged Robotic Systems. Cutting Edge Robotics. doi:10.5772/4669Chestnutt, J., Lau, M., Cheung, G., Kuffner, J., Hodgins, J., & Kanade, T. (s. f.). Footstep Planning for the Honda ASIMO Humanoid. Proceedings of the 2005 IEEE International Conference on Robotics and Automation. doi:10.1109/robot.2005.1570188Arikawa, K., & Hirose, S. (s. f.). Development of quadruped walking robot TITAN-VIII. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS ’96. doi:10.1109/iros.1996.570670Kurazume, R., Byong-won, A., Ohta, K., & Hasegawa, T. (s. f.). Experimental study on energy efficiency for quadruped walking vehicles. Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453). doi:10.1109/iros.2003.1250697Hirose, S., Fukuda, Y., Yoneda, K., Nagakubo, A., Tsukagoshi, H., Arikawa, K., 
 Hodoshima, R. (2009). Quadruped walking robots at Tokyo Institute of Technology. IEEE Robotics & Automation Magazine, 16(2), 104-114. doi:10.1109/mra.2009.932524Stoica, A., Carbone, G., Ceccarelli, M., & Pisla, D. (2010). Cassino Hexapod : Experiences and new leg design. 2010 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR). doi:10.1109/aqtr.2010.5520756Bares, J. E., & Wettergreen, D. S. (1999). Dante II: Technical Description, Results, and Lessons Learned. The International Journal of Robotics Research, 18(7), 621-649. doi:10.1177/02783649922066475Schiele, A., Romstedt, J., Lee, C., Henkel, H., Klinkner, S., Bertrand, R., 
 Michaelis, H. (2008). NanoKhod Exploration Rover - A Rugged Rover Suited for Small, Low-Cost, Planetary Lander Mission. IEEE Robotics & Automation Magazine, 15(2), 96-107. doi:10.1109/mra.2008.917888Takayama, T., & Hirose, S. (2003). Development of Souryu I & II -Connected Crawler Vehicle for Inspection of Narrow and Winding Space. Journal of Robotics and Mechatronics, 15(1), 61-69. doi:10.20965/jrm.2003.p0061Cuesta, F., & Ollero, A. (2005). Intelligent Mobile Robot Navigation. Springer Tracts in Advanced Robotics. doi:10.1007/b14079Ohya, I., Kosaka, A., & Kak, A. (1998). Vision-based navigation by a mobile robot with obstacle avoidance using single-camera vision and ultrasonic sensing. IEEE Transactions on Robotics and Automation, 14(6), 969-978. doi:10.1109/70.736780Desouza, G. N., & Kak, A. C. (2002). Vision for mobile robot navigation: a survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(2), 237-267. doi:10.1109/34.982903Borenstein, J., Everett, H. R., Feng, L., & Wehe, D. (1997). Mobile robot positioning: Sensors and techniques. Journal of Robotic Systems, 14(4), 231-249. doi:10.1002/(sici)1097-4563(199704)14:43.0.co;2-rBetke, M., & Gurvits, L. (1997). Mobile robot localization using landmarks. IEEE Transactions on Robotics and Automation, 13(2), 251-263. doi:10.1109/70.563647Kuffner, J., Nishiwaki, K., Kagami, S., Inaba, M., & Inoue, H. (2005). Motion Planning for Humanoid Robots. Robotics Research. The Eleventh International Symposium, 365-374. doi:10.1007/11008941_39Lee, Y.-J., & Bien, Z. (2002). Path planning for a quadruped robot: an artificial field approach. Advanced Robotics, 16(7), 609-627. doi:10.1163/15685530260390746Petres, C., Pailhas, Y., Patron, P., Petillot, Y., Evans, J., & Lane, D. (2007). Path Planning for Autonomous Underwater Vehicles. IEEE Transactions on Robotics, 23(2), 331-341. doi:10.1109/tro.2007.895057P. Raja. (2012). Optimal path planning of mobile robots: A review. International Journal of the Physical Sciences, 7(9). doi:10.5897/ijps11.1745Hart, P., Nilsson, N., & Raphael, B. (1968). A Formal Basis for the Heuristic Determination of Minimum Cost Paths. IEEE Transactions on Systems Science and Cybernetics, 4(2), 100-107. doi:10.1109/tssc.1968.300136Lozano-PĂ©rez, T., & Wesley, M. A. (1979). An algorithm for planning collision-free paths among polyhedral obstacles. Communications of the ACM, 22(10), 560-570. doi:10.1145/359156.359164Lozano-Perez. (1983). Spatial Planning: A Configuration Space Approach. IEEE Transactions on Computers, C-32(2), 108-120. doi:10.1109/tc.1983.1676196Brooks, R. A. (1983). Solving the find-path problem by good representation of free space. IEEE Transactions on Systems, Man, and Cybernetics, SMC-13(2), 190-197. doi:10.1109/tsmc.1983.6313112Schwartz, J. T., & Sharir, M. (1983). On the «piano movers» problem. II. General techniques for computing topological properties of real algebraic manifolds. Advances in Applied Mathematics, 4(3), 298-351. doi:10.1016/0196-8858(83)90014-3Kavraki LE. Random networks in configurations space for fast path planning. Doctoral dissertation, Department of Computer Science, Stanford University, Stanford, CA, 1994.Kavraki, L. E., Latombe, J.-C., Motwani, R., & Raghavan, P. (1998). Randomized Query Processing in Robot Path Planning. Journal of Computer and System Sciences, 57(1), 50-60. doi:10.1006/jcss.1998.1578Hsu, D., Kindel, R., Latombe, J.-C., & Rock, S. (2002). Randomized Kinodynamic Motion Planning with Moving Obstacles. The International Journal of Robotics Research, 21(3), 233-255. doi:10.1177/027836402320556421Kavraki, L. E., Svestka, P., Latombe, J.-C., & Overmars, M. H. (1996). Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and Automation, 12(4), 566-580. doi:10.1109/70.508439Rubio, F., Valero, F., Sunyer, J., & Mata, V. (2009). Direct step‐by‐step method for industrial robot path planning. Industrial Robot: An International Journal, 36(6), 594-607. doi:10.1108/01439910910994669Howard, T. M., & Kelly, A. (2007). Optimal Rough Terrain Trajectory Generation for Wheeled Mobile Robots. The International Journal of Robotics Research, 26(2), 141-166. doi:10.1177/0278364906075328Valero FJ. PlanificaciĂłn de trayectorias libres de obstĂĄculos para un manipulador plano. Doctoral Thesis, UPV, Spain, 1990.Valero, F., Mata, V., Cuadrado, J. I., & Ceccarelli, M. (1996). A formulation for path planning of manipulators in complex environments by using adjacent configurations. Advanced Robotics, 11(1), 33-56. doi:10.1163/156855397x00038Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182-197. doi:10.1109/4235.996017Garcia, M. A. P., Montiel, O., Castillo, O., SepĂșlveda, R., & Melin, P. (2009). Path planning for autonomous mobile robot navigation with ant colony optimization and fuzzy cost function evaluation. Applied Soft Computing, 9(3), 1102-1110. doi:10.1016/j.asoc.2009.02.014Miao, H., & Tian, Y.-C. (2013). Dynamic robot path planning using an enhanced simulated annealing approach. Applied Mathematics and Computation, 222, 420-437. doi:10.1016/j.amc.2013.07.022Bobrow, J. E., Dubowsky, S., & Gibson, J. S. (1985). Time-Optimal Control of Robotic Manipulators Along Specified Paths. The International Journal of Robotics Research, 4(3), 3-17. doi:10.1177/027836498500400301Kang Shin, & McKay, N. (1985). Minimum-time control of robotic manipulators with geometric path constraints. IEEE Transactions on Automatic Control, 30(6), 531-541. doi:10.1109/tac.1985.1104009Kyriakopoulos, K. J., & Saridis, G. N. (s. f.). Minimum jerk path generation. Proceedings. 1988 IEEE International Conference on Robotics and Automation. doi:10.1109/robot.1988.12075Constantinescu, D., & Croft, E. A. (2000). Smooth and time-optimal trajectory planning for industrial manipulators along specified paths. Journal of Robotic Systems, 17(5), 233-249. doi:10.1002/(sici)1097-4563(200005)17:53.0.co;2-yGasparetto, A., & Zanotto, V. (2010). Optimal trajectory planning for industrial robots. Advances in Engineering Software, 41(4), 548-556. doi:10.1016/j.advengsoft.2009.11.001JIANGdagger, Z.-P., & NIJMEIJER, H. (1997). Tracking Control of Mobile Robots: A Case Study in Backstepping**This paper was not presented at any IFAC meeting. This paper was recommended for publication in revised form by Associate Editor Alberto Isidori under the direction of Editor Tamer BaƟar. Automatica, 33(7), 1393-1399. doi:10.1016/s0005-1098(97)00055-1Klosowski, J. T., Held, M., Mitchell, J. S. B., Sowizral, H., & Zikan, K. (1998). Efficient collision detection using bounding volume hierarchies of k-DOPs. IEEE Transactions on Visualization and Computer Graphics, 4(1), 21-36. doi:10.1109/2945.675649Mirtich B. V-Clip: fast and robust polyhedral collision detection. Technical Report TR97-05, Mitsubishi Electric Research Laboratory, 1997.Mohamed, E. F., El-Metwally, K., & Hanafy, A. R. (2011). An improved Tangent Bug method integrated with artificial potential field for multi-robot path planning. 2011 International Symposium on Innovations in Intelligent Systems and Applications. doi:10.1109/inista.2011.5946136Seder, M., & Petrovic, I. (2007). Dynamic window based approach to mobile robot motion control in the presence of moving obstacles. Proceedings 2007 IEEE International Conference on Robotics and Automation. doi:10.1109/robot.2007.363613Simmons, R. (s. f.). The curvature-velocity method for local obstacle avoidance. Proceedings of IEEE International Conference on Robotics and Automation. doi:10.1109/robot.1996.51102

    Design and Numerical Analysis of Flow Characteristics in a Scaled Volute and Vaned Nozzle of Radial Turbocharger Turbines

    Full text link
    [EN] Over the past few decades, the aerodynamic improvements of turbocharger turbines contributed significantly to the overall efficiency augmentation and the advancements in downsizing of internal combustion engines. Due to the compact size of automotive turbochargers, the experimental measurement of the complex internal aerodynamics has been insufficiently studied. Hence, turbine designs mostly rely on the results of numerical simulations and the validation of zero-dimensional parameters as efficiency and reduced mass flow. To push the aerodynamic development even further, a precise validation of three-dimensional flow patterns predicted by applied computational fluid dynamics (CFD) methods is in need. This paper presents the design of an up-scaled volute-stator model, which allows optical experimental measurement techniques. In a preliminary step, numerical results indicate that the enlarged geometry will be representative of the flow patterns and characteristic non-dimensional numbers at defined flow sections of the real size turbine. Limitations due to rotor-stator interactions are highlighted. Measurement sections of interest for available measurement techniques are predefined.The authors disclose receipt of the following financial support for the research, authorship, and/or publication of this article: This work was partly sponsored by the program "Ayuda a Primeros Proyectos de Investigacion (PAID-06-18), Vicerrectorado de Investigacion, Innovacion y Transferencia de la Universitat Politecnica de Valencia (UPV), Spain". The support given to Ms. N.H.G. by Universitat Politecnica de Valencia through the "FPI-Subprograma 2" (No.FPI-2018-S2-1368) grant within the "Programa de Apoyo para la Investigacion y Desarrollo (PAID-01-18)" is gratefully acknowledgedTiseira, A.; Navarro, R.; Inhestern, LB.; Hervås-Gómez, N. (2020). Design and Numerical Analysis of Flow Characteristics in a Scaled Volute and Vaned Nozzle of Radial Turbocharger Turbines. Energies. 13(11):1-19. https://doi.org/10.3390/en13112930S1191311Praveena, V., & Martin, M. L. J. (2018). A review on various after treatment techniques to reduce NOx emissions in a CI engine. Journal of the Energy Institute, 91(5), 704-720. doi:10.1016/j.joei.2017.05.010Sindhu, R., Amba Prasad Rao, G., & Madhu Murthy, K. (2018). Effective reduction of NOx emissions from diesel engine using split injections. Alexandria Engineering Journal, 57(3), 1379-1392. doi:10.1016/j.aej.2017.06.009Gil, A., Tiseira, A. O., García-Cuevas, L. M., Usaquén, T. R., & Mijotte, G. (2018). Fast three-dimensional heat transfer model for computing internal temperatures in the bearing housing of automotive turbochargers. International Journal of Engine Research, 21(8), 1286-1297. doi:10.1177/1468087418804949Suhrmann, J. F., Peitsch, D., Gugau, M., & Heuer, T. (2012). On the Effect of Volute Tongue Design on Radial Turbine Performance. Volume 8: Turbomachinery, Parts A, B, and C. doi:10.1115/gt2012-69525Roumeas, M., & Cros, S. (2012). Aerodynamic Investigation of a Nozzle Clearance Effect on Radial Turbine Performance. Volume 8: Turbomachinery, Parts A, B, and C. doi:10.1115/gt2012-68835Liu, Y., Yang, C., Qi, M., Zhang, H., & Zhao, B. (2014). Shock, Leakage Flow and Wake Interactions in a Radial Turbine With Variable Guide Vanes. Volume 2D: Turbomachinery. doi:10.1115/gt2014-25888Cornolti, L., Onorati, A., Cerri, T., Montenegro, G., & Piscaglia, F. (2013). 1D simulation of a turbocharged Diesel engine with comparison of short and long EGR route solutions. Applied Energy, 111, 1-15. doi:10.1016/j.apenergy.2013.04.016Bohbot, J., Chryssakis, C., & Miche, M. (2006). Simulation of a 4-Cylinder Turbocharged Gasoline Direct Injection Engine Using a Direct Temporal Coupling Between a 1D Simulation Software and a 3D Combustion Code. SAE Technical Paper Series. doi:10.4271/2006-01-3263Inhestern, L. B. (s. f.). Measurement, Simulation, and 1D-Modeling of Turbocharger Radial Turbines at Design and Extreme Off-Design Conditions. doi:10.4995/thesis/10251/119989Tamaki, H., & Unno, M. (2008). Study on Flow Fields in Variable Area Nozzles for Radial Turbines. International Journal of Fluid Machinery and Systems, 1(1), 47-56. doi:10.5293/ijfms.2008.1.1.047Eroglu, H., & Tabakoff, W. (1991). LDV Measurements and Investigation of Flow Field Through Radial Turbine Guide Vanes. Journal of Fluids Engineering, 113(4), 660-667. doi:10.1115/1.2926531Karamanis, N., Martinez-Botas, R. F., & Su, C. C. (2000). Mixed Flow Turbines: Inlet and Exit Flow Under Steady and Pulsating Conditions. Volume 1: Aircraft Engine; Marine; Turbomachinery; Microturbines and Small Turbomachinery. doi:10.1115/2000-gt-0470Galindo, J., Tiseira Izaguirre, A. O., García-Cuevas, L. M., & Hervås Gómez, N. (2020). Experimental approach for the analysis of the flow behaviour in the stator of a real centripetal turbine. International Journal of Engine Research, 22(6), 2010-2020. doi:10.1177/1468087420916281Dufour, G., Carbonneau, X., Cazalbou, J.-B., & Chassaing, P. (2006). Practical Use of Similarity and Scaling Laws for Centrifugal Compressor Design. Volume 6: Turbomachinery, Parts A and B. doi:10.1115/gt2006-91227Tancrez, M., Galindo, J., Guardiola, C., Fajardo, P., & Varnier, O. (2011). Turbine adapted maps for turbocharger engine matching. Experimental Thermal and Fluid Science, 35(1), 146-153. doi:10.1016/j.expthermflusci.2010.07.018Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8), 1598-1605. doi:10.2514/3.12149Broatch, A., Galindo, J., Navarro, R., & García-Tíscar, J. (2014). Methodology for experimental validation of a CFD model for predicting noise generation in centrifugal compressors. International Journal of Heat and Fluid Flow, 50, 134-144. doi:10.1016/j.ijheatfluidflow.2014.06.006Smirnov, P. E., Hansen, T., & Menter, F. R. (2007). Numerical Simulation of Turbulent Flows in Centrifugal Compressor Stages With Different Radial Gaps. Volume 6: Turbo Expo 2007, Parts A and B. doi:10.1115/gt2007-27376Serrano, J. R., Olmeda, P., Arnau, F. J., Dombrovsky, A., & Smith, L. (2014). Analysis and Methodology to Characterize Heat Transfer Phenomena in Automotive Turbochargers. Journal of Engineering for Gas Turbines and Power, 137(2). doi:10.1115/1.4028261Serrano, J. R., Olmeda, P., Arnau, F. J., Dombrovsky, A., & Smith, L. (2015). Turbocharger heat transfer and mechanical losses influence in predicting engines performance by using one-dimensional simulation codes. Energy, 86, 204-218. doi:10.1016/j.energy.2015.03.130Serrano, J. R., Tiseira, A., García-Cuevas, L. M., Inhestern, L. B., & Tartoussi, H. (2017). Radial turbine performance measurement under extreme off-design conditions. Energy, 125, 72-84. doi:10.1016/j.energy.2017.02.118Serrano, J. R., Gil, A., Navarro, R., & Inhestern, L. B. (2017). Extremely Low Mass Flow at High Blade to Jet Speed Ratio in Variable Geometry Radial Turbines and its Influence on the Flow Pattern: A CFD Analysis. Volume 8: Microturbines, Turbochargers and Small Turbomachines; Steam Turbines. doi:10.1115/gt2017-63368Serrano, J. R., Navarro, R., García-Cuevas, L. M., & Inhestern, L. B. (2019). Contribution to tip leakage loss modeling in radial turbines based on 3D flow analysis and 1D characterization. International Journal of Heat and Fluid Flow, 78, 108423. doi:10.1016/j.ijheatfluidflow.2019.108423Choi, M., Baek, J. H., Chung, H. T., Oh, S. H., & Ko, H. Y. (2008). Effects of the low Reynolds number on the loss characteristics in an axial compressor. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 222(2), 209-218. doi:10.1243/09576509jpe520Klausner, E., & Gampe, U. (2014). Evaluation and Enhancement of a One-Dimensional Performance Analysis Method for Centrifugal Compressors. Volume 2D: Turbomachinery. doi:10.1115/gt2014-25141Tiainen, J., Jaatinen-VÀrri, A., Grönman, A., Turunen-Saaresti, T., & Backman, J. (2018). Effect of FreeStream Velocity Definition on Boundary Layer Thickness and Losses in Centrifugal Compressors. Journal of Turbomachinery, 140(5). doi:10.1115/1.4038872Vinuesa, R., Hosseini, S. M., Hanifi, A., Henningson, D. S., & Schlatter, P. (2017). Pressure-Gradient Turbulent Boundary Layers Developing Around a Wing Section. Flow, Turbulence and Combustion, 99(3-4), 613-641. doi:10.1007/s10494-017-9840-

    Knowledge, Promotional Events, and the Contribution of Clustering to Innovation

    Full text link
    This is an author's accepted manuscript of an article published in: “Journal of Promotion Management"; Volume 21, Issue 4, 2015; copyright Taylor & Francis; available online at: http://dx.doi.org/10.1080/10496491.2015.1051407This research provides insight on the mechanisms through which knowledge acquired through promotional events and through spatial co-location simultaneously sustains firm s innovation. Applying the concept of temporary clusters to promotional events, we simultaneously test how internal resources mediating effect and promotional events moderating role affect innovation in clusters. Regression analyses with nonparametric bootstrapping and a large sample of Spanish clusters confirm the synergies derived from the combination of internal resources, local relationships, and complementary foreign events. Although extra-cluster linkages increase this effect, synergies creation requires attendance to international exhibitions or conventions. Valuable implications for practitioners and policy makers are discussed.Belso MartĂ­nez, JA.; Mas VerdĂș, F.; Roig Tierno, H. (2015). Knowledge, Promotional Events, and the Contribution of Clustering to Innovation. Journal of Promotion Management. 21(4):504-515. doi:10.1080/10496491.2015.1051407S504515214Asheim, B. T., & Isaksen, A. (2002). The Journal of Technology Transfer, 27(1), 77-86. doi:10.1023/a:1013100704794Autant-Bernard, C., Billand, P., Frachisse, D., & Massard, N. (2007). Social distance versus spatial distance in R&D cooperation: Empirical evidence from European collaboration choices in micro and nanotechnologies. Papers in Regional Science, 86(3), 495-519. doi:10.1111/j.1435-5957.2007.00132.xBathelt, H., Malmberg, A., & Maskell, P. (2004). Clusters and knowledge: local buzz, global pipelines and the process of knowledge creation. Progress in Human Geography, 28(1), 31-56. doi:10.1191/0309132504ph469oaBathelt, H., & Schuldt, N. (2008). Between Luminaires and Meat Grinders: International Trade Fairs as Temporary Clusters. Regional Studies, 42(6), 853-868. doi:10.1080/00343400701543298Boschma, R. (2005). Proximity and Innovation: A Critical Assessment. Regional Studies, 39(1), 61-74. doi:10.1080/0034340052000320887Cohen, W. M., & Levinthal, D. A. (1990). Absorptive Capacity: A New Perspective on Learning and Innovation. Administrative Science Quarterly, 35(1), 128. doi:10.2307/2393553GeigenmĂŒller, A. (2010). The role of virtual trade fairs in relationship value creation. Journal of Business & Industrial Marketing, 25(4), 284-292. doi:10.1108/08858621011038243Giner, J. M., & MarĂ­a, M. J. S. (2002). ‘Territorial systems of small firms in Spain: an analysis of productive and organizational characteristics in industrial districts’. Entrepreneurship & Regional Development, 14(3), 211-228. doi:10.1080/08985620210136009Giuliani, E., & Bell, M. (2005). The micro-determinants of meso-level learning and innovation: evidence from a Chilean wine cluster. Research Policy, 34(1), 47-68. doi:10.1016/j.respol.2004.10.008Hervas-Oliver, J.-L., & Albors-Garrigos, J. (2008). The role of the firm’s internal and relational capabilities in clusters: when distance and embeddedness are not enough to explain innovation. Journal of Economic Geography, 9(2), 263-283. doi:10.1093/jeg/lbn033Lagendijk, A., & Lorentzen, A. (2007). Proximity, Knowledge and Innovation in Peripheral Regions. On the Intersection between Geographical and Organizational Proximity. European Planning Studies, 15(4), 457-466. doi:10.1080/09654310601133260Ling-yee, L. (2006). Relationship learning at trade shows: Its antecedents and consequences. Industrial Marketing Management, 35(2), 166-177. doi:10.1016/j.indmarman.2005.03.006Lorentzen, A. (2007). The Geography of Knowledge Sourcing—A Case Study of Polish Manufacturing Enterprises. European Planning Studies, 15(4), 467-486. doi:10.1080/09654310601133252Markusen, A. (1996). Sticky Places in Slippery Space: A Typology of Industrial Districts. Economic Geography, 72(3), 293. doi:10.2307/144402McCann, B. T., & Folta, T. B. (2011). Performance differentials within geographic clusters. Journal of Business Venturing, 26(1), 104-123. doi:10.1016/j.jbusvent.2009.04.004Palumbo, F., & Herbig, P. A. (2002). Trade Shows and Fairs. Journal of Promotion Management, 8(1), 93-108. doi:10.1300/j057v08n01_09Preacher, K. J., Rucker, D. D., & Hayes, A. F. (2007). Addressing Moderated Mediation Hypotheses: Theory, Methods, and Prescriptions. Multivariate Behavioral Research, 42(1), 185-227. doi:10.1080/00273170701341316RamĂ­rez-Pasillas, M. (2008). Resituating Proximity and Knowledge Cross-fertilization in Clusters by Means of International Trade Fairs. European Planning Studies, 16(5), 643-663. doi:10.1080/09654310802049158RamĂ­rez-Pasillas, M. (2010). International trade fairs as amplifiers of permanent and temporary proximities in clusters. Entrepreneurship & Regional Development, 22(2), 155-187. doi:10.1080/08985620902815106Rinallo, D., & Golfetto, F. (2011). Exploring the Knowledge Strategies of Temporary Cluster Organizers: A Longitudinal Study of the EU Fabric Industry Trade Shows (1986-2006). Economic Geography, 87(4), 453-476. doi:10.1111/j.1944-8287.2011.01127.xRychen, F., & Zimmermann, J.-B. (2008). Clusters in the Global Knowledge-based Economy: Knowledge Gatekeepers and Temporary Proximity. Regional Studies, 42(6), 767-776. doi:10.1080/00343400802088300Tafesse, W., & Korneliussen, T. (2012). Managing Trade Show Campaigns: Why Managerial Responsibilities Matter? Journal of Promotion Management, 18(2), 236-253. doi:10.1080/10496491.2012.668434Tanner, J. F., & Chonko, L. B. (2002). Using Trade Shows Throughout the Product Life Cycle. Journal of Promotion Management, 8(1), 109-125. doi:10.1300/j057v08n01_10Torre, A. (2008). On the Role Played by Temporary Geographical Proximity in Knowledge Transmission. Regional Studies, 42(6), 869-889. doi:10.1080/00343400801922814Wolfe, D. A., & Gertler, M. S. (2004). Clusters from the Inside and Out: Local Dynamics and Global Linkages. Urban Studies, 41(5-6), 1071-1093. doi:10.1080/00420980410001675832Wood, E. H. (2009). Evaluating Event Marketing: Experience or Outcome? Journal of Promotion Management, 15(1-2), 247-268. doi:10.1080/1049649090289258

    Sustainability and Kaizen: Business Model Trends in Healthcare

    Full text link
    [EN] Kaizen, or continuous improvement, is a management tool that allows the identification of activities that have no value in the processes examined. This identification leads to the improvement of these processes within any organization and promotes economic and social sustainability, and to a lesser extent environmental sustainability. Kaizen, already widely and successfully employed in the industrial sector, is now being applied in the health sector. However, the health sector tends to publish only the results of how processes have been improved in finely focused areas and the resulting benefits. The majority of the benefits focus on time and cost reduction. In this study, the authors carried out a bibliometric analysis using the Scimat program, which maps the thematic evolution of Kaizen in the health sector and its relationship with sustainability, in order to promote the interest of the health sector for this type of process improvement. The findings confirm that the implementation of Kaizen is recent and constantly evolves and grows, and that it can help economic and social sustainability, and to a lesser extent environmental sustainability.Morell-Santandreu, O.; Santandreu Mascarell, C.; GarcĂ­a Sabater, JJ. (2020). Sustainability and Kaizen: Business Model Trends in Healthcare. Sustainability. 12(24):1-28. https://doi.org/10.3390/su122410622S1281224Sepetis, A. (2019). Sustainable Health Care Management in the Greek Health Care Sector. Open Journal of Social Sciences, 07(12), 386-402. doi:10.4236/jss.2019.712030Sustainable Healthcare—Working towards the Paradigm Shift https://www.anhinternational.org/wp-content/uploads/old/files/100617SustainableHealthcare_White-Paper.pdfWeisz, U., Haas, W., Pelikan, J. M., & Schmied, H. (2011). Sustainable Hospitals: A Socio-Ecological Approach. GAIA - Ecological Perspectives for Science and Society, 20(3), 191-198. doi:10.14512/gaia.20.3.10McGain, F., & Naylor, C. (2014). Environmental sustainability in hospitals – a systematic review and research agenda. Journal of Health Services Research & Policy, 19(4), 245-252. doi:10.1177/1355819614534836D’Andreamatteo, A., Ianni, L., Lega, F., & Sargiacomo, M. (2015). Lean in healthcare: A comprehensive review. Health Policy, 119(9), 1197-1209. doi:10.1016/j.healthpol.2015.02.002Norazlan, A. N. I., Habidin, N. F., Roslan, M. H., & Zainudin, M. Z. (2014). Investigation of kaizen blitz and sustainable performance for Malaysian healthcare industry. International Journal of Quality and Innovation, 2(3/4), 272. doi:10.1504/ijqi.2014.066381Patient Safety in Developing and Transitional Countries 2012 www.who.int/patientsafety/research/emro_afro_report.pdfElmontsri, M., Almashrafi, A., Banarsee, R., & Majeed, A. (2017). Status of patient safety culture in Arab countries: a systematic review. BMJ Open, 7(2), e013487. doi:10.1136/bmjopen-2016-013487Paul Brunet, A., & New, S. (2003). Kaizenin Japan: an empirical study. International Journal of Operations & Production Management, 23(12), 1426-1446. doi:10.1108/01443570310506704Ferreira, D. M. C., & Saurin, T. A. (2019). A complexity theory perspective of kaizen: a study in healthcare. Production Planning & Control, 30(16), 1337-1353. doi:10.1080/09537287.2019.1615649Chahal, H., & Fayza, N. A. (2016). An exploratory study on kaizen muda and organisational sustainability: patients’ perspective. International Journal of Lean Enterprise Research, 2(1), 81. doi:10.1504/ijler.2016.078249Ishijima, H., Nishikido, K., Teshima, M., Nishikawa, S., & Gawad, E. A. (2019). Introducing the «5S-KAIZEN-TQM» approach into public hospitals in Egypt. International Journal of Health Care Quality Assurance, 33(1), 89-109. doi:10.1108/ijhcqa-06-2018-0143Mazzocato, P., Stenfors-Hayes, T., von Thiele Schwarz, U., Hasson, H., & Nyström, M. E. (2016). Kaizen practice in healthcare: a qualitative analysis of hospital employees’ suggestions for improvement. BMJ Open, 6(7), e012256. doi:10.1136/bmjopen-2016-012256Gowen, C. R., McFadden, K. L., & Settaluri, S. (2012). Contrasting continuous quality improvement, Six Sigma, and lean management for enhanced outcomes in US hospitals. American Journal of Business, 27(2), 133-153. doi:10.1108/19355181211274442Grove, A. L., Meredith, J. O., MacIntyre, M., Angelis, J., & Neailey, K. (2010). UK health visiting: challenges faced during lean implementation. Leadership in Health Services, 23(3), 204-218. doi:10.1108/17511871011061037Ho, S. K. M. (2010). Integrated lean TQM model for global sustainability and competitiveness. The TQM Journal, 22(2), 143+-158. doi:10.1108/17542731011024264DelliFraine, J. L., Langabeer, J. R., & Nembhard, I. M. (2010). Assessing the Evidence of Six Sigma and Lean in the Health Care Industry. Quality Management in Health Care, 19(3), 211-225. doi:10.1097/qmh.0b013e3181eb140eSouza, J. P. E., & Alves, J. M. (2018). Lean-integrated management system: A model for sustainability improvement. Journal of Cleaner Production, 172, 2667-2682. doi:10.1016/j.jclepro.2017.11.144Costa, L. B. M., & Godinho Filho, M. (2016). Lean healthcare: review, classification and analysis of literature. Production Planning & Control, 27(10), 823-836. doi:10.1080/09537287.2016.1143131Costa, D. G. da, Pasin, S. S., MagalhĂŁes, A. M. M. de, Moura, G. M. S. S. de, Rosso, C. B., & Saurin, T. A. (2018). Analysis of the preparation and administration of medications in the hospital context based on Lean thinking. Escola Anna Nery, 22(4). doi:10.1590/2177-9465-ean-2017-0402Van Aken, J., Chandrasekaran, A., & Halman, J. (2016). Conducting and publishing design science research. Journal of Operations Management, 47-48(1), 1-8. doi:10.1016/j.jom.2016.06.004Glover, W. J., Farris, J. A., Van Aken, E. M., & Doolen, T. L. (2011). Critical success factors for the sustainability of Kaizen event human resource outcomes: An empirical study. International Journal of Production Economics, 132(2), 197-213. doi:10.1016/j.ijpe.2011.04.005Glover, W. J., Liu, W., Farris, J. A., & Van Aken, E. M. (2013). Characteristics of established kaizen event programs: an empirical study. International Journal of Operations & Production Management, 33(9), 1166-1201. doi:10.1108/ijopm-03-2011-0119Aij, K. H., & Rapsaniotis, S. (2017). Leadership requirements for Lean versus servant leadership in health care: a systematic review of the literature. Journal of Healthcare Leadership, Volume 9, 1-14. doi:10.2147/jhl.s120166Garcia, S., Cintra, Y., Torres, R. de C. S. R., & Lima, F. G. (2016). Corporate sustainability management: a proposed multi-criteria model to support balanced decision-making. Journal of Cleaner Production, 136, 181-196. doi:10.1016/j.jclepro.2016.01.110The Sustainability Yearbook 2014 https://www.p-plus.nl/resources/articlefiles/SustainabilityYearbook2014.pdfRebelo, M. F., Santos, G., & Silva, R. (2016). Integration of management systems: towards a sustained success and development of organizations. Journal of Cleaner Production, 127, 96-111. doi:10.1016/j.jclepro.2016.04.011Cobo, M. J., LĂłpez-Herrera, A. G., Herrera-Viedma, E., & Herrera, F. (2011). An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the Fuzzy Sets Theory field. Journal of Informetrics, 5(1), 146-166. doi:10.1016/j.joi.2010.10.002Cobo, M. J., LĂłpez-Herrera, A. G., Herrera-Viedma, E., & Herrera, F. (2012). SciMAT: A new science mapping analysis software tool. Journal of the American Society for Information Science and Technology, 63(8), 1609-1630. doi:10.1002/asi.22688MartĂ­nez-Jurado, P. J., & Moyano-Fuentes, J. (2014). Lean Management, Supply Chain Management and Sustainability: A Literature Review. Journal of Cleaner Production, 85, 134-150. doi:10.1016/j.jclepro.2013.09.042LĂłpez-Robles, J.-R., Guallar, J., Otegi-Olaso, J.-R., & Gamboa-Rosales, N.-K. (2019). El profesional de la informaciĂłn (EPI): Bibliometric and thematic analysis (2006-2017). El Profesional de la InformaciĂłn, 28(4). doi:10.3145/epi.2019.jul.17WOS Database Available from the Spanish Foundation for Science and Technology https://www.recursoscientificos.fecyt.es/FundaciĂłn Española para la Ciencia y la TecnologĂ­a (FECYT) www.fecyt.esJimĂ©nez-GarcĂ­a, M., Ruiz-Chico, J., Peña-SĂĄnchez, A. R., & LĂłpez-SĂĄnchez, J. A. (2020). A Bibliometric Analysis of Sports Tourism and Sustainability (2002–2019). Sustainability, 12(7), 2840. doi:10.3390/su12072840Chiarini, A., Baccarani, C., & Mascherpa, V. (2018). Lean production, Toyota Production System and Kaizen philosophy. The TQM Journal, 30(4), 425-438. doi:10.1108/tqm-12-2017-0178Garcia, J. A. M., Sabater, J. J. G., & Bonavia, T. (2009). The impact of Kaizen Events on improving the performance of automotive components’ first-tier suppliers. International Journal of Automotive Technology and Management, 9(4), 362. doi:10.1504/ijatm.2009.028524Schwerdtle, P. N., Maxwell, J., Horton, G., & Bonnamy, J. (2019). ‘12 tips for teaching environmental sustainability to health professionals’. Medical Teacher, 42(2), 150-155. doi:10.1080/0142159x.2018.1551994Vergunst, F., Berry, H. L., RugkĂ„sa, J., Burns, T., Molodynski, A., & Maughan, D. L. (2019). Applying the triple bottom line of sustainability to healthcare research—a feasibility study. International Journal for Quality in Health Care, 32(1), 48-53. doi:10.1093/intqhc/mzz049Aznar MĂ­nguet, P., & BarrĂłn Ruiz, Á. (2017). El desarrollo humano sostenible: un compromiso educativo. TeorĂ­a de la EducaciĂłn. Revista Interuniversitaria, 29(1), 25-53. doi:10.14201/teoredu291253Herrera, J., & de las Heras-Rosas, C. (2020). Corporate Social Responsibility and Human Resource Management: Towards Sustainable Business Organizations. Sustainability, 12(3), 841. doi:10.3390/su12030841Leite, H., Bateman, N., & Radnor, Z. (2019). Beyond the ostensible: an exploration of barriers to lean implementation and sustainability in healthcare. Production Planning & Control, 31(1), 1-18. doi:10.1080/09537287.2019.1623426Maghsoudi, T., CascĂłn-Pereira, R., & Beatriz HernĂĄndez Lara, A. (2020). The Role of Collaborative Healthcare in Improving Social Sustainability: A Conceptual Framework. Sustainability, 12(8), 3195. doi:10.3390/su12083195Stelson, P., Hille, J., Eseonu, C., & Doolen, T. (2017). What drives continuous improvement project success in healthcare? International Journal of Health Care Quality Assurance, 30(1), 43-57. doi:10.1108/ijhcqa-03-2016-0035Alvarado RamĂ­rez, K., & Pumisacho Álvaro, V. (2017). PrĂĄcticas de mejora continua, con enfoque Kaizen, en empresas del distrito metropolitano de Quito: Un estudio exploratorio. Intangible Capital, 13(2), 479. doi:10.3926/ic.901Daly, H. E. (1990). Toward some operational principles of sustainable development. Ecological Economics, 2(1), 1-6. doi:10.1016/0921-8009(90)90010-

    Tarski Geometry Axioms – Part II

    Get PDF
    In our earlier article [12], the first part of axioms of geometry proposed by Alfred Tarski [14] was formally introduced by means of Mizar proof assistant [9]. We defined a structure TarskiPlane with the following predicates: of betweenness between (a ternary relation),of congruence of segments equiv (quarternary relation), which satisfy the following properties: congruence symmetry (A1),congruence equivalence relation (A2),congruence identity (A3),segment construction (A4),SAS (A5),betweenness identity (A6),Pasch (A7). Also a simple model, which satisfies these axioms, was previously constructed, and described in [6]. In this paper, we deal with four remaining axioms, namely: the lower dimension axiom (A8),the upper dimension axiom (A9),the Euclid axiom (A10),the continuity axiom (A11). They were introduced in the form of Mizar attributes. Additionally, the relation of congruence of triangles cong is introduced via congruence of sides (SSS).In order to show that the structure which satisfies all eleven Tarski’s axioms really exists, we provided a proof of the registration of a cluster that the Euclidean plane, or rather a natural [5] extension of ordinary metric structure Euclid 2 satisfies all these attributes.Although the tradition of the mechanization of Tarski’s geometry in Mizar is not as long as in Coq [11], first approaches to this topic were done in Mizar in 1990 [16] (even if this article started formal Hilbert axiomatization of geometry, and parallel development was rather unlikely at that time [8]). Connection with another proof assistant should be mentioned – we had some doubts about the proof of the Euclid’s axiom and inspection of the proof taken from Archive of Formal Proofs of Isabelle [10] clarified things a bit. Our development allows for the future faithful mechanization of [13] and opens the possibility of automatically generated Prover9 proofs which was useful in the case of lattice theory [7].Coghetto Roland - Rue de la Brasserie 5, 7100 La LouviĂšre, BelgiumGrabowski Adam - Institute of Informatics, University of BiaƂystok, CioƂkowskiego 1M, 15-245 BiaƂystok, PolandCzesƂaw ByliƄski. Introduction to real linear topological spaces. Formalized Mathematics, 13(1):99–107, 2005.CzesƂaw ByliƄski. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.Roland Coghetto. Circumcenter, circumcircle and centroid of a triangle. Formalized Mathematics, 24(1):17–26, 2016. doi:10.1515/forma-2016-0002.Agata DarmochwaƂ. The Euclidean space. Formalized Mathematics, 2(4):599–603, 1991.Adam Grabowski. Efficient rough set theory merging. Fundamenta Informaticae, 135(4): 371–385, 2014. doi:10.3233/FI-2014-1129.Adam Grabowski. Tarski’s geometry modelled in Mizar computerized proof assistant. In Proceedings of the 2016 Federated Conference on Computer Science and Information Systems, FedCSIS 2016, GdaƄsk, Poland, September 11–14, 2016, pages 373–381, 2016. doi:10.15439/2016F290.Adam Grabowski. Mechanizing complemented lattices within Mizar system. Journal of Automated Reasoning, 55:211–221, 2015. doi:10.1007/s10817-015-9333-5.Adam Grabowski and Christoph Schwarzweller. On duplication in mathematical repositories. In Serge Autexier, Jacques Calmet, David Delahaye, Patrick D. F. Ion, Laurence Rideau, Renaud Rioboo, and Alan P. Sexton, editors, Intelligent Computer Mathematics, 10th International Conference, AISC 2010, 17th Symposium, Calculemus 2010, and 9th International Conference, MKM 2010, Paris, France, July 5–10, 2010. Proceedings, volume 6167 of Lecture Notes in Computer Science, pages 300–314. Springer, 2010. doi:10.1007/978-3-642-14128-7_26.Adam Grabowski, Artur KorniƂowicz, and Adam Naumowicz. Four decades of Mizar. Journal of Automated Reasoning, 55(3):191–198, 2015. doi:10.1007/s10817-015-9345-1.Timothy James McKenzie Makarios. A mechanical verification of the independence of Tarski’s Euclidean Axiom. 2012. Master’s thesis.Julien Narboux. Mechanical theorem proving in Tarski’s geometry. In F. Botana and T. Recio, editors, Automated Deduction in Geometry, volume 4869 of Lecture Notes in Computer Science, pages 139–156. Springer, 2007.William Richter, Adam Grabowski, and Jesse Alama. Tarski geometry axioms. Formalized Mathematics, 22(2):167–176, 2014. doi:10.2478/forma-2014-0017.Wolfram SchwabhĂ€user, Wanda Szmielew, and Alfred Tarski. Metamathematische Methoden in der Geometrie. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1983.Alfred Tarski and Steven Givant. Tarski’s system of geometry. Bulletin of Symbolic Logic, 5(2):175–214, 1999.Andrzej Trybulec and CzesƂaw ByliƄski. Some properties of real numbers. Formalized Mathematics, 1(3):445–449, 1990.Wojciech A. Trybulec. Axioms of incidence. Formalized Mathematics, 1(1):205–213, 1990.Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–296, 1990

    Automatic classification of human facial features based on their appearance

    Full text link
    [EN] Classification or typology systems used to categorize different human body parts have existed for many years. Nevertheless, there are very few taxonomies of facial features. Ergonomics, forensic anthropology, crime prevention or new human-machine interaction systems and online activities, like e-commerce, e-learning, games, dating or social networks, are fields in which classifications of facial features are useful, for example, to create digital interlocutors that optimize the interactions between human and machines. However, classifying isolated facial features is difficult for human observers. Previous works reported low inter-observer and intra-observer agreement in the evaluation of facial features. This work presents a computer-based procedure to automatically classify facial features based on their global appearance. This procedure deals with the difficulties associated with classifying features using judgements from human observers, and facilitates the development of taxonomies of facial features. Taxonomies obtained through this procedure are presented for eyes, mouths and noses.Fuentes-Hurtado, F.; Diego-Mas, JA.; Naranjo Ornedo, V.; Alcañiz Raya, ML. (2019). Automatic classification of human facial features based on their appearance. PLoS ONE. 14(1):1-20. https://doi.org/10.1371/journal.pone.0211314S120141Damasio, A. R. (1985). Prosopagnosia. Trends in Neurosciences, 8, 132-135. doi:10.1016/0166-2236(85)90051-7Bruce, V., & Young, A. (1986). Understanding face recognition. British Journal of Psychology, 77(3), 305-327. doi:10.1111/j.2044-8295.1986.tb02199.xTodorov, A. (2011). Evaluating Faces on Social Dimensions. Social Neuroscience, 54-76. doi:10.1093/acprof:oso/9780195316872.003.0004Little, A. C., Burriss, R. P., Jones, B. C., & Roberts, S. C. (2007). Facial appearance affects voting decisions. Evolution and Human Behavior, 28(1), 18-27. doi:10.1016/j.evolhumbehav.2006.09.002Porter, J. P., & Olson, K. L. (2001). Anthropometric Facial Analysis of the African American Woman. Archives of Facial Plastic Surgery, 3(3), 191-197. doi:10.1001/archfaci.3.3.191GĂŒndĂŒz Arslan, S., Genç, C., OdabaƟ, B., & Devecioğlu Kama, J. (2007). Comparison of Facial Proportions and Anthropometric Norms Among Turkish Young Adults With Different Face Types. Aesthetic Plastic Surgery, 32(2), 234-242. doi:10.1007/s00266-007-9049-yFerring, V., & Pancherz, H. (2008). Divine proportions in the growing face. American Journal of Orthodontics and Dentofacial Orthopedics, 134(4), 472-479. doi:10.1016/j.ajodo.2007.03.027Mane, D. R., Kale, A. D., Bhai, M. B., & Hallikerimath, S. (2010). Anthropometric and anthroposcopic analysis of different shapes of faces in group of Indian population: A pilot study. Journal of Forensic and Legal Medicine, 17(8), 421-425. doi:10.1016/j.jflm.2010.09.001Ritz-Timme, S., Gabriel, P., Tutkuviene, J., Poppa, P., ObertovĂĄ, Z., Gibelli, D., 
 Cattaneo, C. (2011). Metric and morphological assessment of facial features: A study on three European populations. Forensic Science International, 207(1-3), 239.e1-239.e8. doi:10.1016/j.forsciint.2011.01.035Ritz-Timme, S., Gabriel, P., ObertovĂ , Z., Boguslawski, M., Mayer, F., Drabik, A., 
 Cattaneo, C. (2010). A new atlas for the evaluation of facial features: advantages, limits, and applicability. International Journal of Legal Medicine, 125(2), 301-306. doi:10.1007/s00414-010-0446-4Kong, S. G., Heo, J., Abidi, B. R., Paik, J., & Abidi, M. A. (2005). Recent advances in visual and infrared face recognition—a review. Computer Vision and Image Understanding, 97(1), 103-135. doi:10.1016/j.cviu.2004.04.001Tavares, G., MourĂŁo, A., & MagalhĂŁes, J. (2016). Crowdsourcing facial expressions for affective-interaction. Computer Vision and Image Understanding, 147, 102-113. doi:10.1016/j.cviu.2016.02.001Buckingham, G., DeBruine, L. M., Little, A. C., Welling, L. L. M., Conway, C. A., Tiddeman, B. P., & Jones, B. C. (2006). Visual adaptation to masculine and feminine faces influences generalized preferences and perceptions of trustworthiness. Evolution and Human Behavior, 27(5), 381-389. doi:10.1016/j.evolhumbehav.2006.03.001Boberg M, Piippo P, Ollila E. Designing Avatars. DIMEA ‘08 Proc 3rd Int Conf Digit Interact Media Entertain Arts. ACM; 2008; 232–239. doi: https://doi.org/10.1145/1413634.1413679Rojas Q., M., Masip, D., Todorov, A., & Vitria, J. (2011). Automatic Prediction of Facial Trait Judgments: Appearance vs. Structural Models. PLoS ONE, 6(8), e23323. doi:10.1371/journal.pone.0023323Laurentini, A., & Bottino, A. (2014). Computer analysis of face beauty: A survey. Computer Vision and Image Understanding, 125, 184-199. doi:10.1016/j.cviu.2014.04.006Alemany S, Gonzalez J, Nacher B, Soriano C, Arnaiz C, Heras H. Anthropometric survey of the Spanish female population aimed at the apparel industry. Proceedings of the 2010 Intl Conference on 3D Body scanning Technologies. 2010. pp. 307–315.VinuĂ©, G., Epifanio, I., & Alemany, S. (2015). Archetypoids: A new approach to define representative archetypal data. Computational Statistics & Data Analysis, 87, 102-115. doi:10.1016/j.csda.2015.01.018Jee, S., & Yun, M. H. (2016). An anthropometric survey of Korean hand and hand shape types. International Journal of Industrial Ergonomics, 53, 10-18. doi:10.1016/j.ergon.2015.10.004Kim, N.-S., & Do, W.-H. (2014). Classification of Elderly Women’s Foot Type. Journal of the Korean Society of Clothing and Textiles, 38(3), 305-320. doi:10.5850/jksct.2014.38.3.305Sarakon P, Charoenpong T, Charoensiriwath S. Face shape classification from 3D human data by using SVM. The 7th 2014 Biomedical Engineering International Conference. IEEE; 2014. pp. 1–5. doi: https://doi.org/10.1109/BMEiCON.2014.7017382PRESTON, T. A., & SINGH, M. (1972). Redintegrated Somatotyping. Ergonomics, 15(6), 693-700. doi:10.1080/00140137208924469Lin, Y.-L., & Lee, K.-L. (1999). Investigation of anthropometry basis grouping technique for subject classification. Ergonomics, 42(10), 1311-1316. doi:10.1080/001401399184965Malousaris, G. G., Bergeles, N. K., Barzouka, K. G., Bayios, I. A., Nassis, G. P., & Koskolou, M. D. (2008). Somatotype, size and body composition of competitive female volleyball players. Journal of Science and Medicine in Sport, 11(3), 337-344. doi:10.1016/j.jsams.2006.11.008Carvalho, P. V. R., dos Santos, I. L., Gomes, J. O., Borges, M. R. S., & Guerlain, S. (2008). Human factors approach for evaluation and redesign of human–system interfaces of a nuclear power plant simulator. Displays, 29(3), 273-284. doi:10.1016/j.displa.2007.08.010Fabri M, Moore D. The use of emotionally expressive avatars in Collaborative Virtual Environments. AISB’05 Convention:Proceedings of the Joint Symposium on Virtual Social Agents: Social Presence Cues for Virtual Humanoids Empathic Interaction with Synthetic Characters Mind Minding Agents. 2005. pp. 88–94. doi:citeulike-article-id:790934Sukhija, P., Behal, S., & Singh, P. (2016). Face Recognition System Using Genetic Algorithm. Procedia Computer Science, 85, 410-417. doi:10.1016/j.procs.2016.05.183Trescak T, Bogdanovych A, Simoff S, Rodriguez I. Generating diverse ethnic groups with genetic algorithms. Proceedings of the 18th ACM symposium on Virtual reality software and technology—VRST ‘12. New York, New York, USA: ACM Press; 2012. p. 1. doi: https://doi.org/10.1145/2407336.2407338Vanezis, P., Lu, D., Cockburn, J., Gonzalez, A., McCombe, G., Trujillo, O., & Vanezis, M. (1996). Morphological Classification of Facial Features in Adult Caucasian Males Based on an Assessment of Photographs of 50 Subjects. Journal of Forensic Sciences, 41(5), 13998J. doi:10.1520/jfs13998jTamir, A. (2011). Numerical Survey of the Different Shapes of the Human Nose. Journal of Craniofacial Surgery, 22(3), 1104-1107. doi:10.1097/scs.0b013e3182108eb3Tamir, A. (2013). Numerical Survey of the Different Shapes of Human Chin. Journal of Craniofacial Surgery, 24(5), 1657-1659. doi:10.1097/scs.0b013e3182942b77Richler, J. J., Cheung, O. S., & Gauthier, I. (2011). Holistic Processing Predicts Face Recognition. Psychological Science, 22(4), 464-471. doi:10.1177/0956797611401753Taubert, J., Apthorp, D., Aagten-Murphy, D., & Alais, D. (2011). The role of holistic processing in face perception: Evidence from the face inversion effect. Vision Research, 51(11), 1273-1278. doi:10.1016/j.visres.2011.04.002Donnelly, N., & Davidoff, J. (1999). The Mental Representations of Faces and Houses: Issues Concerning Parts and Wholes. Visual Cognition, 6(3-4), 319-343. doi:10.1080/135062899395000Davidoff, J., & Donnelly, N. (1990). Object superiority: A comparison of complete and part probes. Acta Psychologica, 73(3), 225-243. doi:10.1016/0001-6918(90)90024-aTanaka, J. W., & Farah, M. J. (1993). Parts and Wholes in Face Recognition. The Quarterly Journal of Experimental Psychology Section A, 46(2), 225-245. doi:10.1080/14640749308401045Wang, R., Li, J., Fang, H., Tian, M., & Liu, J. (2012). Individual Differences in Holistic Processing Predict Face Recognition Ability. Psychological Science, 23(2), 169-177. doi:10.1177/0956797611420575Rhodes, G., Ewing, L., Hayward, W. G., Maurer, D., Mondloch, C. J., & Tanaka, J. W. (2009). Contact and other-race effects in configural and component processing of faces. British Journal of Psychology, 100(4), 717-728. doi:10.1348/000712608x396503Miller, G. A. (1994). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 101(2), 343-352. doi:10.1037/0033-295x.101.2.343Scharff, A., Palmer, J., & Moore, C. M. (2011). Evidence of fixed capacity in visual object categorization. Psychonomic Bulletin & Review, 18(4), 713-721. doi:10.3758/s13423-011-0101-1Meyers, E., & Wolf, L. (2007). Using Biologically Inspired Features for Face Processing. International Journal of Computer Vision, 76(1), 93-104. doi:10.1007/s11263-007-0058-8Cootes, T. F., Edwards, G. J., & Taylor, C. J. (2001). Active appearance models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(6), 681-685. doi:10.1109/34.927467Ahonen, T., Hadid, A., & Pietikainen, M. (2006). Face Description with Local Binary Patterns: Application to Face Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(12), 2037-2041. doi:10.1109/tpami.2006.244Belhumeur, P. N., Hespanha, J. P., & Kriegman, D. J. (1997). Eigenfaces vs. Fisherfaces: recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(7), 711-720. doi:10.1109/34.598228Turk, M., & Pentland, A. (1991). Eigenfaces for Recognition. Journal of Cognitive Neuroscience, 3(1), 71-86. doi:10.1162/jocn.1991.3.1.71Klare B, Jain AK. On a taxonomy of facial features. IEEE 4th International Conference on Biometrics: Theory, Applications and Systems, BTAS 2010. IEEE; 2010. pp. 1–8. doi: https://doi.org/10.1109/BTAS.2010.5634533Chihaoui, M., Elkefi, A., Bellil, W., & Ben Amar, C. (2016). A Survey of 2D Face Recognition Techniques. Computers, 5(4), 21. doi:10.3390/computers5040021Ma, D. S., Correll, J., & Wittenbrink, B. (2015). The Chicago face database: A free stimulus set of faces and norming data. Behavior Research Methods, 47(4), 1122-1135. doi:10.3758/s13428-014-0532-5Asthana A, Zafeiriou S, Cheng S, Pantic M. Incremental face alignment in the wild. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2014. pp. 1859–1866. doi: https://doi.org/10.1109/CVPR.2014.240Bag S, Barik S, Sen P, Sanyal G. A statistical nonparametric approach of face recognition: combination of eigenface & modified k-means clustering. Proceedings Second International Conference on Information Processing. 2008. p. 198.Doukas, C., & Maglogiannis, I. (2010). A Fast Mobile Face Recognition System for Android OS Based on Eigenfaces Decomposition. Artificial Intelligence Applications and Innovations, 295-302. doi:10.1007/978-3-642-16239-8_39Huang P, Huang Y, Wang W, Wang L. Deep embedding network for clustering. Proceedings—International Conference on Pattern Recognition. 2014. pp. 1532–1537. doi: https://doi.org/10.1109/ICPR.2014.272Dizaji KG, Herandi A, Deng C, Cai W, Huang H. Deep Clustering via Joint Convolutional Autoencoder Embedding and Relative Entropy Minimization. Proceedings of the IEEE International Conference on Computer Vision. 2017. doi: https://doi.org/10.1109/ICCV.2017.612Xie J, Girshick R, Farhadi A. Unsupervised deep embedding for clustering analysis [Internet]. Proceedings of the 33rd International Conference on International Conference on Machine Learning—Volume 48. JMLR.org; 2016. pp. 478–487. Available: https://dl.acm.org/citation.cfm?id=3045442Nousi, P., & Tefas, A. (2017). Discriminatively Trained Autoencoders for Fast and Accurate Face Recognition. Communications in Computer and Information Science, 205-215. doi:10.1007/978-3-319-65172-9_18Sirovich, L., & Kirby, M. (1987). Low-dimensional procedure for the characterization of human faces. Journal of the Optical Society of America A, 4(3), 519. doi:10.1364/josaa.4.00051

    Analisis Pengaruh Quality, Image, Brand Equity, dan Value terhadap Loyalitas Seller sebagai Salah Satu Partner E-marketplace di Lazada Indonesia

    Full text link
    Penelitian ini bertujuan untuk mengetahui pengaruh dari beberapa faktor yaitu quality, image, brand equity dan value terhadap loyalitas seller sebagai salah satu partner e-marketplace di Lazada Indonesia. Sampel diambil dengan menggunakan metode purposive sampling, dengan jumlah sampel sebanyak 82 responden. Teknik pengumpulan data menggunakan kuesioner dan literatur. Metode analisis yang digunakan adalah metode analisis regresi berganda untuk mengetahui pengaruh antara variabel-variabel bebas terhadap variabel terikat. Hasil penelitian ini menunjukkan bahwa; 1). Kualitas e-marketplace tidak berpengaruh positif dan siginifikan terhadap loyalitas seller 2). Citra Perusahaan penyedia e-marketplace berpengaruh positif dan signifikan terhadap loyalitas seller 3). Ekuitas brand Perusahaan e-marketplace berpengaruh positif dan signifikan terhadap loyalitas seller 4). Nilai yang dimiliki oleh Perusahaan e-marketplace berpengaruh positif dan signifikan terhadap loyalitas seller 5). Kualitas Pelayanan, citra Perusahaan, ekuitas brand dan nilai Perusahaan secara bersama-sama berpengaruh positif dan signifikan terhadap loyalitas seller sebagai salah satu partner e-marketplace di Lazada Indonesia. Loyalitas seller sebagai salah satu partner e-marketplace di Lazada Indonesia terbukti dipengaruhi oleh keempat variabel yang diteliti yaitu sebesar 74% dan sisanya 26% dipengaruhi oleh faktor atau variabel-variabel lainnya.Kata Kunci: Quality, Image, Brand Equity, Value, Loyalitas Seller2 This study aims to determine the effect of e-service quality, image, brand equity, and value to seller's loyalty as a partner in Lazada Indonesia e-marketplace. Samples were taken by using purposive sampling method, with the total number of sample is 82 respondents. The technique of collecting data is using questionnaires and literatures. The analytical method that used in this research is multiple regression analysis to determine the effect of independent variables on the dependent variable. The results of this study indicate that; 1). E-service quality does not affect significantly on seller's loyalty. 2). Image has a possitive and significant effect on seller's loyalty. 3). Brand Equity has a possitive and significant effect on seller's loyalty. 4). Value has a possitive and significant effect on seller's loyalty. 5). E-Service quality, value, brand equity, and value jointly has a positive and significant effect on seller's loyalty as a partner in Lazada Indonesia e-marketplace. The seller's loyalty shown to be affected by the independent variables in this study at 74% and 26% is influenced by other factors or variables.Keywords: Quality, Image, Brand Equity, Value, Seller's Loyalty DAFTAR PUSTAKA Arikunto, Suharsimi. 2006. Prosedur Penelitian Suatu Pendekatan Praktik. Jakarta: Rineka Cipta. Aydın Erdal, and Savrul Burcu Kilinç, 2014. The Relationship between Globalization and E-Commerce: Turkish Case, Procedia - Social and Behavioral Sciences 150 1267 – 1276 Bresolles GrĂ©gory, Durrieu François, Senecal Sylvain. 2014. A consumer typology based on e-service quality and e-satisfaction. Journal of Retailing and Consumer Services 21, 889–896 Brunn Peter, Jensen Martin, Skovgaard Jakob. 2002. e-Marketplaces: Crafting A Winning Strategy. European Management Journal Vol. 20, No. 3, pp. 286–298 Cunha. 2012. An E-marketplace of Healthcare and Social Care Services: the perceived interest. Procedia Technology 5, 959 – 966 Chi Hsin Kuang, Yeh Huery Ren, Yang Ya Ting. 2009. The Impact of Brand Awareness on Consumer Purchase Intention: The Mediating Effect of Perceived Quality and Brand Loyalty. The Journal of International Management Studies, Volume 4, Number 1 Chien Shu-Hua, Chen Ying-Hueih, Hsu Chin-Yen. 2012. Exploring the impact of trust and relational embeddedness in e-marketplaces: An empirical study in Taiwan. Industrial Marketing Management 41, 460–468 Chircu Alina.M., Mahajan Vijay. 2006. Managing electronic commerce retail transaction costs for customer value. Decision Support Systems 42, 898– 914 D'ambra John, Ramburuth, Prem., & Vatanasakdakul, Savanid. 2010. IT Doesn't Fit! The Influence of Culture on B2B in Thailand. Journal of Global Information Technology Management (Ivy League Publishing). 10-38 Ghozali, Imam. 2006. Aplikasi Analisis Multivariate dengan Sess. Cetakan Keempat. Semarang: Badan Penerbit Universitas Diponogoro ------------------. 2011. Aplikasi Analisis Multivariate dengan Program IBM SPSS19, Badan Penerbit Universitas Diponegoro, Semarang. ------------------. 2005. Aplikasi Analisis Multivariate Dengan Program SPSS. Semarang: UNDIP Goes Paulo, Tu Yanbin, Tung Y.Alex. 2013. Seller heterogeneity in electronic marketplaces: A study of new and experienced sellers in eBay. Decision Support Systems 56, 247–258 Gunasekaran, A., Marri, H. B., McGaughey, R. E., & Nebhwani, M. D. 2002. E-Commerce and its impact on operations management. International Journal of Production Economics, 75,185–197. Hashemi Malayeri, B dan Bastani, F.2000. An introduction to the Internet and the World Wide Web, Part I, Journal of Medical Sciences, TarbiatModarres University, Summer 77, Issue 1, pp. 111. Ho Shu-Chun, and Kauffman Robert.J. 2010. Internet-based selling technology and e-commerce growth: a hybrid growth theory approach with cross-model inference. Inf Technol Manag, 12:409–429 Hong Ilyoo B. 2015. Understanding the consumer's online merchant selection process: The roles of product involvement, perceived risk, and trust expectation. International Journal of Information Management 35, 322–336 Janita M.Soledad, and Miranda F.Javier. 2013. The antecedents of client loyalty in business-to-business (B2B) electronic marketplaces. Industrial Marketing Management 42 814–823 Juntunen Mari, Juntunen Jouni, Juga Jari. 2010. Corporate brand equity and loyalty in B2B markets: A study amonglogistics service purchasers. Macmillan Publishers Ltd. Brand Management Vol. 18, 4/5, 300–311 Malhotra, Naresh, dan Birks, David, 2007. Marketing Research: An Applied Orientation 3rd Edition. London: Practice Hall Nam Janghyeon, Ekinci Yuksel, Whyatt Georgina. 2011. Brand Equity, Brand Loyalty and Consumer Satisfaction. Annals of Tourism Research, Vol. 38, No. 3, pp. 1009–1030 Parasuraman, A., Zeithaml, V. A., & Malhotra, A. (2005). E-S-QUAL a multiple-item scale for assessing electronic service quality. Journal of Service Research, 7(3), 213–233. Pradiani, Theresia. 2014. Pengaruh Trait Competitiveness Terhadap Sales Performance (Studi Kasus di PT Allianz Life Indonesia). Jurnal JIBEKA, volume 8, 55 – 62. Rauyruen Papassapa, Miller Kenneth.E, Groth Markus. 2009. B2B services: linking service loyalty and brand equity, Journal of Service Marketing 23/3 175–186 Rayport, Jeffrey F and Jaworski, Bernard J. 2002. Introduction to E-commerce. Mcgraw Hill Rong Huang and Emine Sarigollu. 2011. How Brand Awareness Relates to Market Outcome, Brand Equity and the Marketing Mix. Journal of Business Research, vol.65, pp.92-99. S. Muylle, A. Basu, 2008. Online support for business processes by electronic intermediaries, Decision Support Systems 45 (4) 845–857. Savrul Mesut, Incekara Ahmet, Sener Sefer. 2014. The Potential of E-Commerce for SMEs in a Globalizing Business Environment, Procedia - Social and Behavioral Sciences 150 35 – 45 Sekaran, Uma, Bougie, Roger, 2010. Research methods for business: a skill building approach. Bandung: Alfabeta Severi Erfan, and Ling Kwek Choon. 2013. The Mediating Effects of Brand Association, Brand Loyalty, Brand Image and Perceived Quality on Brand Equity, Asian Social Science; Vol. 9, No. 3; 2013 Sugiyono. 2002. Metode Penelitian Administrasi. Bandung: CV Alfabeta ------------. 2008. Metode Penelitian Bisnis. Cetakan Keduabelas. Bandung: Alfabeta -----------. 2010. Metode Penelitian Kuantitatif Kualitatif & RND. Bandung: Alfabeta Syuhada Ahmad Anshorimuslim, dan Gambetta Windy. 2013. Online Marketplace for Indonesian Micro Small and Medium Enterprises Based on Social Media. Procedia Technology 11, 446 – 454 Tabachnick BG dan Fidel L.S, 2007. “Using Multivariate Statistic” (Fifth Edition) USA: Pearson Eduction Inc. Umar, Husein. 200. Metodologi Penelitian Untuk Skripsi dan Tesis Bisnis, Jakarta: PT. Gramedia Pustaka. White, A., Daniel, E., Ward, J., & Wilson, H., 2007. The adoption of consortium B2B emarketplaces: An exploratory study. Journal of Strategic Information Systems, 16, 71–103. Wu, Jen-Her., & Hisa, Tzyh-lih. 2004. Analysis of E-commerce innovation and impact: a hypercube model, Electronic Commerce Research and Applications Volume 3, Issue 4, Pages 389–404 Wang Shan, and Archer Norm. 2007. Business-to-business collaboration through electronic marketplaces: An exploratory study. Journal of Purchasing & Supply Management 13 113–126 Zhao Jing, Wang Shan, Huang Wilfred.V. 2008. A study of B2B e-market in China: E-commerce process perspective. Information & Management 45, 242–248 Zhao Kexin, Xia Mu, Shaw Michael.J., Subramaniam Chandrasekar. 2009. The sustainability of B2B e-marketplaces: Ownership structure, market competition, and prior buyer–seller connections. Decision Support Systems 47, 105–114 Zikmund, William G. 2003. Customer Relationship Management: Integrating Marketing Strategy and Information Technology. New Jersey: John Wiley and Sons Zuo Wenming, Huang Qiuping, Fan Chang, Zhang Zhenpeng. 2013. Quality management of B2C e-commerce service based on human factors engineering, Electronic Commerce Research and Applications 12, 309–32

    Effect of Chitin Whiskers on the Molecular Dynamics of Carrageenan-Based Nanocomposites

    Get PDF
    [EN] Films of carrageenan (KC) and glycerol (g) with different contents of chitin nanowhiskers (CHW) were prepared by a solution casting process. The molecular dynamics of pure carrageenan (KC), carrageenan/glycerol (KCg) and KCg with different quantities of CHWs as a filler was studied using dielectric relaxation spectroscopy. The analysis of the CHW effect on the molecular mobility at the glass transition, T-g, indicates that non-attractive intermolecular interactions between KCg and CHW occur. The fragility index increased upon CHW incorporation, due to a reduction in the polymer chains mobility produced by the CHW confinement of the KCg network. The apparent activation energy associated with the relaxation dynamics of the chains at T-g slightly increased with the CHW content. The filler nature effect, CHW or montmorillonite (MMT), on the dynamic mobility of the composites was analyzed by comparing the dynamic behavior of both carrageenan-based composites (KCg/xCHW, KCg/xMMT).This research was funded by the DGCYT grant number [MAT2015-63955-R] and the Vice-Rectorate for Research of the Pontificia Universidad Catolica del Peru and the the Peruvian Science and Technology Program (INNOVATE-PERU) And The APC was funded by MDPI.CarsĂ­ Rosique, M.; Sanchis SĂĄnchez, MJ.; GĂłmez, CM.; Rodriguez, S.; GarcĂ­a-Torres, F. (2019). Effect of Chitin Whiskers on the Molecular Dynamics of Carrageenan-Based Nanocomposites. Polymers. 11(6):1-16. https://doi.org/10.3390/polym11061083116116Zheng, Y., Monty, J., & Linhardt, R. J. (2015). Polysaccharide-based nanocomposites and their applications. Carbohydrate Research, 405, 23-32. doi:10.1016/j.carres.2014.07.016JamrĂłz, E., Kulawik, P., & Kopel, P. (2019). The Effect of Nanofillers on the Functional Properties of Biopolymer-Based Films: A Review. Polymers, 11(4), 675. doi:10.3390/polym11040675Park, S.-B., Lih, E., Park, K.-S., Joung, Y. K., & Han, D. K. (2017). Biopolymer-based functional composites for medical applications. Progress in Polymer Science, 68, 77-105. doi:10.1016/j.progpolymsci.2016.12.003Xie, F., Pollet, E., Halley, P. J., & AvĂ©rous, L. (2013). Starch-based nano-biocomposites. Progress in Polymer Science, 38(10-11), 1590-1628. doi:10.1016/j.progpolymsci.2013.05.002Zhang, R., Wang, X., Wang, J., & Cheng, M. (2018). Synthesis and Characterization of Konjac Glucomannan/Carrageenan/Nano-silica Films for the Preservation of Postharvest White Mushrooms. Polymers, 11(1), 6. doi:10.3390/polym11010006Rhim, J.-W., Park, H.-M., & Ha, C.-S. (2013). Bio-nanocomposites for food packaging applications. Progress in Polymer Science, 38(10-11), 1629-1652. doi:10.1016/j.progpolymsci.2013.05.008MĂŒller, K., Bugnicourt, E., Latorre, M., Jorda, M., Echegoyen Sanz, Y., Lagaron, J., 
 Schmid, M. (2017). Review on the Processing and Properties of Polymer Nanocomposites and Nanocoatings and Their Applications in the Packaging, Automotive and Solar Energy Fields. Nanomaterials, 7(4), 74. doi:10.3390/nano7040074Shankar, S., Reddy, J. P., Rhim, J.-W., & Kim, H.-Y. (2015). Preparation, characterization, and antimicrobial activity of chitin nanofibrils reinforced carrageenan nanocomposite films. Carbohydrate Polymers, 117, 468-475. doi:10.1016/j.carbpol.2014.10.010Corvaglia, S., Rodriguez, S., Bardi, G., Torres, F. G., & Lopez, D. (2016). Chitin whiskers reinforced carrageenan films as low adhesion cell substrates. International Journal of Polymeric Materials and Polymeric Biomaterials, 65(11), 574-580. doi:10.1080/00914037.2016.1149846Shojaee-Aliabadi, S., Mohammadifar, M. A., Hosseini, H., Mohammadi, A., Ghasemlou, M., Hosseini, S. M., 
 Khaksar, R. (2014). Characterization of nanobiocomposite kappa-carrageenan film with Zataria multiflora essential oil and nanoclay. International Journal of Biological Macromolecules, 69, 282-289. doi:10.1016/j.ijbiomac.2014.05.015Reddy, M. M., Vivekanandhan, S., Misra, M., Bhatia, S. K., & Mohanty, A. K. (2013). Biobased plastics and bionanocomposites: Current status and future opportunities. Progress in Polymer Science, 38(10-11), 1653-1689. doi:10.1016/j.progpolymsci.2013.05.006Wang, P., Zhao, X., Lv, Y., Li, M., Liu, X., Li, G., & Yu, G. (2012). Structural and compositional characteristics of hybrid carrageenans from red algae Chondracanthus chamissoi. Carbohydrate Polymers, 89(3), 914-919. doi:10.1016/j.carbpol.2012.04.034Byankina (Barabanova), A. O., Sokolova, E. V., Anastyuk, S. D., Isakov, V. V., Glazunov, V. P., Volod’ko, A. V., 
 Yermak, I. M. (2013). Polysaccharide structure of tetrasporic red seaweed Tichocarpus crinitus. Carbohydrate Polymers, 98(1), 26-35. doi:10.1016/j.carbpol.2013.04.063Stortz, C. A., & Cerezo, A. S. (1992). The 13C NMR spectroscopy of carrageenans: calculation of chemical shifts and computer-aided structural determination. Carbohydrate Polymers, 18(4), 237-242. doi:10.1016/0144-8617(92)90088-8Rodriguez, S. A., Weese, E., Nakamatsu, J., & Torres, F. (2016). Development of Biopolymer Nanocomposites Based on Polysaccharides Obtained from Red AlgaeChondracanthus chamissoiReinforced with Chitin Whiskers and Montmorillonite. Polymer-Plastics Technology and Engineering, 55(15), 1557-1564. doi:10.1080/03602559.2016.1163583Mitsuiki, M., Yamamoto, Y., Mizuno, A., & Motoki, M. (1998). Glass Transition Properties as a Function of Water Content for Various Low-Moisture Galactans. Journal of Agricultural and Food Chemistry, 46(9), 3528-3534. doi:10.1021/jf9709820Picker, K. M. (1999). The use of carrageenan in mixture with microcrystalline cellulose and its functionality for making tablets. European Journal of Pharmaceutics and Biopharmaceutics, 48(1), 27-36. doi:10.1016/s0939-6411(99)00009-0Kasapis, S., & Mitchell, J. R. (2001). Definition of the rheological glass transition temperature in association with the concept of iso-free-volume. International Journal of Biological Macromolecules, 29(4-5), 315-321. doi:10.1016/s0141-8130(01)00180-5Fouda, M. M. G., El-Aassar, M. R., El Fawal, G. F., Hafez, E. E., Masry, S. H. D., & Abdel-Megeed, A. (2015). k-Carrageenan/poly vinyl pyrollidone/polyethylene glycol/silver nanoparticles film for biomedical application. International Journal of Biological Macromolecules, 74, 179-184. doi:10.1016/j.ijbiomac.2014.11.040Arof, A. K., Shuhaimi, N. E. A., Alias, N. A., Kufian, M. Z., & Majid, S. R. (2010). Application of chitosan/iota-carrageenan polymer electrolytes in electrical double layer capacitor (EDLC). Journal of Solid State Electrochemistry, 14(12), 2145-2152. doi:10.1007/s10008-010-1050-8Rescignano, N., Fortunati, E., Armentano, I., Hernandez, R., Mijangos, C., Pasquino, R., & Kenny, J. M. (2015). Use of alginate, chitosan and cellulose nanocrystals as emulsion stabilizers in the synthesis of biodegradable polymeric nanoparticles. Journal of Colloid and Interface Science, 445, 31-39. doi:10.1016/j.jcis.2014.12.032Chang, P. R., Jian, R., Yu, J., & Ma, X. (2010). Starch-based composites reinforced with novel chitin nanoparticles. Carbohydrate Polymers, 80(2), 420-425. doi:10.1016/j.carbpol.2009.11.041Zeng, J.-B., He, Y.-S., Li, S.-L., & Wang, Y.-Z. (2011). Chitin Whiskers: An Overview. Biomacromolecules, 13(1), 1-11. doi:10.1021/bm201564aVillanueva, M. E., Salinas, A., DĂ­az, L. E., & Copello, G. J. (2015). Chitin nanowhiskers as alternative antimicrobial controlled release carriers. New Journal of Chemistry, 39(1), 614-620. doi:10.1039/c4nj01522cKameda, T., Miyazawa, M., Ono, H., & Yoshida, M. (2005). Hydrogen Bonding Structure and Stability of?-Chitin Studied by13C Solid-State NMR. Macromolecular Bioscience, 5(2), 103-106. doi:10.1002/mabi.200400142MARCHESSAULT, R. H., MOREHEAD, F. F., & WALTER, N. M. (1959). Liquid Crystal Systems from Fibrillar Polysaccharides. Nature, 184(4686), 632-633. doi:10.1038/184632a0Paillet, M., & Dufresne, A. (2001). Chitin Whisker Reinforced Thermoplastic Nanocomposites. Macromolecules, 34(19), 6527-6530. doi:10.1021/ma002049vGopalan Nair, K., & Dufresne, A. (2003). Crab Shell Chitin Whisker Reinforced Natural Rubber Nanocomposites. 1. Processing and Swelling Behavior. Biomacromolecules, 4(3), 657-665. doi:10.1021/bm020127bHuang, Y., Yao, M., Zheng, X., Liang, X., Su, X., Zhang, Y., 
 Zhang, L. (2015). Effects of Chitin Whiskers on Physical Properties and Osteoblast Culture of Alginate Based Nanocomposite Hydrogels. Biomacromolecules, 16(11), 3499-3507. doi:10.1021/acs.biomac.5b00928Morin, A., & Dufresne, A. (2002). Nanocomposites of Chitin Whiskers from Riftia Tubes and Poly(caprolactone). Macromolecules, 35(6), 2190-2199. doi:10.1021/ma011493aWatthanaphanit, A., Supaphol, P., Tamura, H., Tokura, S., & Rujiravanit, R. (2008). Fabrication, structure, and properties of chitin whisker-reinforced alginate nanocomposite fibers. Journal of Applied Polymer Science, 110(2), 890-899. doi:10.1002/app.28634Salaberria, A. M., Diaz, R. H., Labidi, J., & Fernandes, S. C. M. (2015). Preparing valuable renewable nanocomposite films based exclusively on oceanic biomass – Chitin nanofillers and chitosan. Reactive and Functional Polymers, 89, 31-39. doi:10.1016/j.reactfunctpolym.2015.03.003RodrĂ­guez, S., Gatto, F., Pesce, L., Canale, C., Pompa, P. P., Bardi, G., 
 Torres, F. G. (2017). Monitoring cell substrate interactions in exopolysaccharide-based films reinforced with chitin whiskers and starch nanoparticles used as cell substrates. International Journal of Polymeric Materials and Polymeric Biomaterials, 67(6), 333-339. doi:10.1080/00914037.2017.1297942Pazmiño Betancourt, B. A., Douglas, J. F., & Starr, F. W. (2013). Fragility and cooperative motion in a glass-forming polymer–nanoparticle composite. Soft Matter, 9(1), 241-254. doi:10.1039/c2sm26800kSanchis, M. J., CarsĂ­, M., Culebras, M., GĂłmez, C. M., Rodriguez, S., & Torres, F. G. (2017). Molecular dynamics of carrageenan composites reinforced with Cloisite Na+ montmorillonite nanoclay. Carbohydrate Polymers, 176, 117-126. doi:10.1016/j.carbpol.2017.08.012Wu, J., Zhang, K., Girouard, N., & Meredith, J. C. (2014). Facile Route to Produce Chitin Nanofibers as Precursors for Flexible and Transparent Gas Barrier Materials. Biomacromolecules, 15(12), 4614-4620. doi:10.1021/bm501416qSauti, G., & McLachlan, D. S. (2007). Impedance and modulus spectra of the percolation system silicon–polyester resin and their analysis using the two exponent phenomenological percolation equation. Journal of Materials Science, 42(16), 6477-6488. doi:10.1007/s10853-007-1564-3Johari, G. P., Kim, S., & Shanker, R. M. (2007). Dielectric Relaxation and Crystallization of Ultraviscous Melt and Glassy States of Aspirin, Ibuprofen, Progesterone, and Quinidine. Journal of Pharmaceutical Sciences, 96(5), 1159-1175. doi:10.1002/jps.20921Anastasiadis, S. H., Karatasos, K., Vlachos, G., Manias, E., & Giannelis, E. P. (2000). Nanoscopic-Confinement Effects on Local Dynamics. Physical Review Letters, 84(5), 915-918. doi:10.1103/physrevlett.84.915Böhning, M., Goering, H., Fritz, A., Brzezinka, K.-W., Turky, G., Schönhals, A., & Schartel, B. (2005). Dielectric Study of Molecular Mobility in Poly(propylene-graft-maleic anhydride)/Clay Nanocomposites. Macromolecules, 38(7), 2764-2774. doi:10.1021/ma048315cHodge, I. M., Ngai, K. L., & Moynihan, C. T. (2005). Comments on the electric modulus function. Journal of Non-Crystalline Solids, 351(2), 104-115. doi:10.1016/j.jnoncrysol.2004.07.089Havriliak, S., & Negami, S. (2007). A complex plane analysis of α-dispersions in some polymer systems. Journal of Polymer Science Part C: Polymer Symposia, 14(1), 99-117. doi:10.1002/polc.5070140111TSANGARIS, G. M., PSARRAS, G. C., & TSANGARIS, G. M. (1998). Electric modulus and interfacial polarization in composite polymeric systems. Journal of Materials Science, 33(8), 2027-2037. doi:10.1023/a:1004398514901Fulcher, G. S. (1925). ANALYSIS OF RECENT MEASUREMENTS OF THE VISCOSITY OF GLASSES. Journal of the American Ceramic Society, 8(6), 339-355. doi:10.1111/j.1151-2916.1925.tb16731.xTammann, G., & Hesse, W. (1926). Die AbhĂ€ngigkeit der ViscositĂ€t von der Temperatur bie unterkĂŒhlten FlĂŒssigkeiten. Zeitschrift fĂŒr anorganische und allgemeine Chemie, 156(1), 245-257. doi:10.1002/zaac.19261560121Fragiadakis, D., Pissis, P., & Bokobza, L. (2005). Glass transition and molecular dynamics in poly(dimethylsiloxane)/silica nanocomposites. Polymer, 46(16), 6001-6008. doi:10.1016/j.polymer.2005.05.080Rittigstein, P., & Torkelson, J. M. (2006). Polymer-nanoparticle interfacial interactions in polymer nanocomposites: Confinement effects on glass transition temperature and suppression of physical aging. Journal of Polymer Science Part B: Polymer Physics, 44(20), 2935-2943. doi:10.1002/polb.20925Oh, H., & Green, P. F. (2009). Polymer chain dynamics and glass transition in athermal polymer/nanoparticle mixtures. Nature Materials, 8(2), 139-143. doi:10.1038/nmat2354Riggleman, R. A., Yoshimoto, K., Douglas, J. F., & de Pablo, J. J. (2006). Influence of Confinement on the Fragility of Antiplasticized and Pure Polymer Films. Physical Review Letters, 97(4). doi:10.1103/physrevlett.97.045502Doolittle, A. K. (1951). Studies in Newtonian Flow. II. The Dependence of the Viscosity of Liquids on Free‐Space. Journal of Applied Physics, 22(12), 1471-1475. doi:10.1063/1.1699894Doolittle, A. K. (1952). Studies in Newtonian Flow. III. The Dependence of the Viscosity of Liquids on Molecular Weight and Free Space (in Homologous Series). Journal of Applied Physics, 23(2), 236-239. doi:10.1063/1.1702182Plazek, D. J., & Ngai, K. L. (1991). Correlation of polymer segmental chain dynamics with temperature-dependent time-scale shifts. Macromolecules, 24(5), 1222-1224. doi:10.1021/ma00005a044Merino, E. G., Atlas, S., Raihane, M., Belfkira, A., Lahcini, M., Hult, A., 
 Correia, N. T. (2011). Molecular dynamics of poly(ATRIF) homopolymer and poly(AN-co-ATRIF) copolymer investigated by dielectric relaxation spectroscopy. European Polymer Journal, 47(7), 1429-1446. doi:10.1016/j.eurpolymj.2011.04.006Böhmer, R., Ngai, K. L., Angell, C. A., & Plazek, D. J. (1993). Nonexponential relaxations in strong and fragile glass formers. The Journal of Chemical Physics, 99(5), 4201-4209. doi:10.1063/1.466117Roland, C. M., & Ngai, K. L. (1991). Segmental relaxation and molecular structure in polybutadienes and polyisoprene. Macromolecules, 24(19), 5315-5319. doi:10.1021/ma00019a016Roland, C. M., & Ngai, K. L. (1992). Segmental relaxation and molecular structure in polybutadienes and polyisoprene. [Erratum to document cited in CA115(14):137101w]. Macromolecules, 25(6), 1844-1844. doi:10.1021/ma00032a038Ngai, K. L., & Roland, C. M. (1993). Chemical structure and intermolecular cooperativity: dielectric relaxation results. Macromolecules, 26(25), 6824-6830. doi:10.1021/ma00077a019Roland, C. M. (1992). Terminal and segmental relaxations in epoxidized polyisoprene. Macromolecules, 25(25), 7031-7036. doi:10.1021/ma00051a047Angell, C. A., Poole, P. H., & Shao, J. (1994). Glass-forming liquids, anomalous liquids, and polyamorphism in liquids and biopolymers. Il Nuovo Cimento D, 16(8), 993-1025. doi:10.1007/bf02458784Roland, C. M., & Ngai, K. L. (1996). The anomalous Debye–Waller factor and the fragility of glasses. The Journal of Chemical Physics, 104(8), 2967-2970. doi:10.1063/1.471117Hodge, I. M. (1987). Effects of annealing and prior history on enthalpy relaxation in glassy polymers. 6. Adam-Gibbs formulation of nonlinearity. Macromolecules, 20(11), 2897-2908. doi:10.1021/ma00177a044Hodge, I. M. (1996). Strong and fragile liquids — a brief critique. Journal of Non-Crystalline Solids, 202(1-2), 164-172. doi:10.1016/0022-3093(96)00151-2Roland, C. M., & Ngai, K. L. (1997). Commentary on ‘Strong and fragile liquids - A brief critique’. Journal of Non-Crystalline Solids, 212(1), 74-76. doi:10.1016/s0022-3093(96)00684-9Angell, C. A. (1997). Why C1 = 16–17 in the WLF equation is physical—and the fragility of polymers. Polymer, 38(26), 6261-6266. doi:10.1016/s0032-3861(97)00201-2Angell, C. A. (1995). Formation of Glasses from Liquids and Biopolymers. Science, 267(5206), 1924-1935. doi:10.1126/science.267.5206.1924Angell, C. . (1991). Relaxation in liquids, polymers and plastic crystals — strong/fragile patterns and problems. Journal of Non-Crystalline Solids, 131-133, 13-31. doi:10.1016/0022-3093(91)90266-9Kunal, K., Robertson, C. G., Pawlus, S., Hahn, S. F., & Sokolov, A. P. (2008). Role of Chemical Structure in Fragility of Polymers: A Qualitative Picture. Macromolecules, 41(19), 7232-7238. doi:10.1021/ma801155cSokolov, A. P., Novikov, V. N., & Ding, Y. (2007). Why many polymers are so fragile. Journal of Physics: Condensed Matter, 19(20), 205116. doi:10.1088/0953-8984/19/20/205116Sanchis, M. J., DomĂ­nguez-Espinosa, G., DĂ­az-Calleja, R., GuzmĂĄn, J., & Riande, E. (2008). Influence of structural chemical characteristics on polymer chain dynamics. The Journal of Chemical Physics, 129(5), 054903. doi:10.1063/1.295649
    • 

    corecore