114,670 research outputs found

    Formal Development of Rough Inclusion Functions

    Get PDF
    Rough sets, developed by Pawlak [15], are important tool to describe situation of incomplete or partially unknown information. In this article, continuing the formalization of rough sets [12], we give the formal characterization of three rough inclusion functions (RIFs). We start with the standard one, κ£, connected with Łukasiewicz [14], and extend this research for two additional RIFs: κ 1, and κ 2, following a paper by Gomolińska [4], [3]. We also define q-RIFs and weak q-RIFs [2]. The paper establishes a formal counterpart of [7] and makes a preliminary step towards rough mereology [16], [17] in Mizar [13].Institute of Informatics, University of Białystok, PolandAnna Gomolinska. A comparative study of some generalized rough approximations. Fundamenta Informaticae, 51:103–119, 2002.Anna Gomolinska. Rough approximation based on weak q-RIFs. In James F. Peters, Andrzej Skowron, Marcin Wolski, Mihir K. Chakraborty, and Wei-Zhi Wu, editors, Transactions on Rough Sets X, volume 5656 of Lecture Notes in Computer Science, pages 117–135, Berlin, Heidelberg, 2009. Springer. ISBN 978-3-642-03281-3. doi:10.1007/978-3-642-03281-3_4.Anna Gomolinska. On three closely related rough inclusion functions. In Marzena Kryszkiewicz, James F. Peters, Henryk Rybinski, and Andrzej Skowron, editors, Rough Sets and Intelligent Systems Paradigms, volume 4585 of Lecture Notes in Computer Science, pages 142–151, Berlin, Heidelberg, 2007. Springer. doi:10.1007/978-3-540-73451-2_16.Anna Gomolinska. On certain rough inclusion functions. In James F. Peters, Andrzej Skowron, and Henryk Rybinski, editors, Transactions on Rough Sets IX, volume 5390 of Lecture Notes in Computer Science, pages 35–55. Springer Berlin Heidelberg, 2008. doi:10.1007/978-3-540-89876-4_3.Adam Grabowski. On the computer-assisted reasoning about rough sets. In B. Dunin-Kęplicz, A. Jankowski, A. Skowron, and M. Szczuka, editors, International Workshop on Monitoring, Security, and Rescue Techniques in Multiagent Systems Location, volume 28 of Advances in Soft Computing, pages 215–226, Berlin, Heidelberg, 2005. Springer-Verlag. doi:10.1007/3-540-32370-8_15.Adam Grabowski. Efficient rough set theory merging. Fundamenta Informaticae, 135(4): 371–385, 2014. doi:10.3233/FI-2014-1129.Adam Grabowski. Building a framework of rough inclusion functions by means of computerized proof assistant. In Tamás Mihálydeák, Fan Min, Guoyin Wang, Mohua Banerjee, Ivo Düntsch, Zbigniew Suraj, and Davide Ciucci, editors, Rough Sets, volume 11499 of Lecture Notes in Computer Science, pages 225–238, Cham, 2019. Springer International Publishing. ISBN 978-3-030-22815-6. doi:10.1007/978-3-030-22815-6_18.Adam Grabowski. Lattice theory for rough sets – a case study with Mizar. Fundamenta Informaticae, 147(2–3):223–240, 2016. doi:10.3233/FI-2016-1406.Adam Grabowski. Relational formal characterization of rough sets. Formalized Mathematics, 21(1):55–64, 2013. doi:10.2478/forma-2013-0006.Adam Grabowski. Binary relations-based rough sets – an automated approach. Formalized Mathematics, 24(2):143–155, 2016. doi:10.1515/forma-2016-0011.Adam Grabowski and Christoph Schwarzweller. On duplication in mathematical repositories. In Serge Autexier, Jacques Calmet, David Delahaye, Patrick D. F. Ion, Laurence Rideau, Renaud Rioboo, and Alan P. Sexton, editors, Intelligent Computer Mathematics, 10th International Conference, AISC 2010, 17th Symposium, Calculemus 2010, and 9th International Conference, MKM 2010, Paris, France, July 5–10, 2010. Proceedings, volume 6167 of Lecture Notes in Computer Science, pages 300–314. Springer, 2010. doi:10.1007/978-3-642-14128-7_26.Adam Grabowski and Michał Sielwiesiuk. Formalizing two generalized approximation operators. Formalized Mathematics, 26(2):183–191, 2018. doi:10.2478/forma-2018-0016.Adam Grabowski, Artur Korniłowicz, and Adam Naumowicz. Four decades of Mizar. Journal of Automated Reasoning, 55(3):191–198, 2015. doi:10.1007/s10817-015-9345-1.Jan Łukasiewicz. Die logischen Grundlagen der Wahrscheinlichkeitsrechnung. In L. Borkowski, editor, Jan Łukasiewicz – Selected Works, pages 16–63. North Holland, Polish Scientific Publ., Amsterdam London Warsaw, 1970. First published in Kraków, 1913.Zdzisław Pawlak. Rough sets. International Journal of Parallel Programming, 11:341–356, 1982. doi:10.1007/BF01001956.Lech Polkowski. Rough mereology. In Approximate Reasoning by Parts, volume 20 of Intelligent Systems Reference Library, pages 229–257, Berlin, Heidelberg, 2011. Springer. ISBN 978-3-642-22279-5. doi:10.1007/978-3-642-22279-5_6.Lech Polkowski and Andrzej Skowron. Rough mereology: A new paradigm for approximate reasoning. International Journal of Approximate Reasoning, 15(4):333–365, 1996. doi:10.1016/S0888-613X(96)00072-2.Andrzej Skowron and Jarosław Stepaniuk. Tolerance approximation spaces. Fundamenta Informaticae, 27(2/3):245–253, 1996. doi:10.3233/FI-1996-272311.William Zhu. Generalized rough sets based on relations. Information Sciences, 177: 4997–5011, 2007.27433734

    User-centered visual analysis using a hybrid reasoning architecture for intensive care units

    Get PDF
    One problem pertaining to Intensive Care Unit information systems is that, in some cases, a very dense display of data can result. To ensure the overview and readability of the increasing volumes of data, some special features are required (e.g., data prioritization, clustering, and selection mechanisms) with the application of analytical methods (e.g., temporal data abstraction, principal component analysis, and detection of events). This paper addresses the problem of improving the integration of the visual and analytical methods applied to medical monitoring systems. We present a knowledge- and machine learning-based approach to support the knowledge discovery process with appropriate analytical and visual methods. Its potential benefit to the development of user interfaces for intelligent monitors that can assist with the detection and explanation of new, potentially threatening medical events. The proposed hybrid reasoning architecture provides an interactive graphical user interface to adjust the parameters of the analytical methods based on the users' task at hand. The action sequences performed on the graphical user interface by the user are consolidated in a dynamic knowledge base with specific hybrid reasoning that integrates symbolic and connectionist approaches. These sequences of expert knowledge acquisition can be very efficient for making easier knowledge emergence during a similar experience and positively impact the monitoring of critical situations. The provided graphical user interface incorporating a user-centered visual analysis is exploited to facilitate the natural and effective representation of clinical information for patient care

    Bounded Rationality and Heuristics in Humans and in Artificial Cognitive Systems

    Get PDF
    In this paper I will present an analysis of the impact that the notion of “bounded rationality”, introduced by Herbert Simon in his book “Administrative Behavior”, produced in the field of Artificial Intelligence (AI). In particular, by focusing on the field of Automated Decision Making (ADM), I will show how the introduction of the cognitive dimension into the study of choice of a rational (natural) agent, indirectly determined - in the AI field - the development of a line of research aiming at the realisation of artificial systems whose decisions are based on the adoption of powerful shortcut strategies (known as heuristics) based on “satisficing” - i.e. non optimal - solutions to problem solving. I will show how the “heuristic approach” to problem solving allowed, in AI, to face problems of combinatorial complexity in real-life situations and still represents an important strategy for the design and implementation of intelligent systems

    Designing intelligent computer‐based simulations: A pragmatic approach

    Get PDF
    This paper examines the design of intelligent multimedia simulations. A case study is presented which uses an approach based in part on intelligent tutoring system design to integrate formative assessment into the learning of clinical decision‐making skills for nursing students. The approach advocated uses a modular design with an integrated intelligent agent within a multimedia simulation. The application was created using an object‐orientated programming language for the multimedia interface (Delphi) and a logic‐based interpreted language (Prolog) to create an expert assessment system. Domain knowledge is also encoded in a Windows help file reducing some of the complexity of the expert system. This approach offers a method for simplifying the production of an intelligent simulation system. The problems developing intelligent tutoring systems are examined and an argument is made for a practical approach to developing intelligent multimedia simulation systems

    Partial Correctness of a Power Algorithm

    Get PDF
    This work continues a formal verification of algorithms written in terms of simple-named complex-valued nominative data [6],[8],[15],[11],[12],[13]. In this paper we present a formalization in the Mizar system [3],[1] of the partial correctness of the algorithm: i := val.1 j := val.2 b := val.3 n := val.4 s := val.5 while (i n) i := i + j s := s * b return s computing the natural n power of given complex number b, where variables i, b, n, s are located as values of a V-valued Function, loc, as: loc/.1 = i, loc/.3 = b, loc/.4 = n and loc/.5 = s, and the constant 1 is located in the location loc/.2 = j (set V represents simple names of considered nominative data [17]).The validity of the algorithm is presented in terms of semantic Floyd-Hoare triples over such data [9]. Proofs of the correctness are based on an inference system for an extended Floyd-Hoare logic [2],[4] with partial pre- and post-conditions [14],[16],[7],[5].Institute of Informatics, University of Białystok, PolandGrzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.R.W. Floyd. Assigning meanings to programs. Mathematical aspects of computer science, 19(19–32), 1967.Adam Grabowski, Artur Korniłowicz, and Adam Naumowicz. Four decades of Mizar. Journal of Automated Reasoning, 55(3):191–198, 2015. doi:10.1007/s10817-015-9345-1.C.A.R. Hoare. An axiomatic basis for computer programming. Commun. ACM, 12(10): 576–580, 1969.Ievgen Ivanov and Mykola Nikitchenko. On the sequence rule for the Floyd-Hoare logic with partial pre- and post-conditions. In Proceedings of the 14th International Conference on ICT in Education, Research and Industrial Applications. Integration, Harmonization and Knowledge Transfer. Volume II: Workshops, Kyiv, Ukraine, May 14–17, 2018, volume 2104 of CEUR Workshop Proceedings, pages 716–724, 2018.Ievgen Ivanov, Mykola Nikitchenko, Andrii Kryvolap, and Artur Korniłowicz. Simple-named complex-valued nominative data – definition and basic operations. Formalized Mathematics, 25(3):205–216, 2017. doi:10.1515/forma-2017-0020.Ievgen Ivanov, Artur Korniłowicz, and Mykola Nikitchenko. Implementation of the composition-nominative approach to program formalization in Mizar. The Computer Science Journal of Moldova, 26(1):59–76, 2018.Ievgen Ivanov, Artur Korniłowicz, and Mykola Nikitchenko. On an algorithmic algebra over simple-named complex-valued nominative data. Formalized Mathematics, 26(2):149–158, 2018. doi:10.2478/forma-2018-0012.Ievgen Ivanov, Artur Korniłowicz, and Mykola Nikitchenko. An inference system of an extension of Floyd-Hoare logic for partial predicates. Formalized Mathematics, 26(2): 159–164, 2018. doi:10.2478/forma-2018-0013.Ievgen Ivanov, Artur Korniłowicz, and Mykola Nikitchenko. Partial correctness of GCD algorithm. Formalized Mathematics, 26(2):165–173, 2018. doi:10.2478/forma-2018-0014.Ievgen Ivanov, Artur Korniłowicz, and Mykola Nikitchenko. On algebras of algorithms and specifications over uninterpreted data. Formalized Mathematics, 26(2):141–147, 2018. doi:10.2478/forma-2018-0011.Artur Kornilowicz, Andrii Kryvolap, Mykola Nikitchenko, and Ievgen Ivanov. Formalization of the algebra of nominative data in Mizar. In Maria Ganzha, Leszek A. Maciaszek, and Marcin Paprzycki, editors, Proceedings of the 2017 Federated Conference on Computer Science and Information Systems, FedCSIS 2017, Prague, Czech Republic, September 3–6, 2017., pages 237–244, 2017. ISBN 978-83-946253-7-5. doi:10.15439/2017F301.Artur Kornilowicz, Andrii Kryvolap, Mykola Nikitchenko, and Ievgen Ivanov. Formalization of the nominative algorithmic algebra in Mizar. In Leszek Borzemski, Jerzy Świątek, and Zofia Wilimowska, editors, Information Systems Architecture and Technology: Proceedings of 38th International Conference on Information Systems Architecture and Technology – ISAT 2017 – Part II, Szklarska Poręba, Poland, September 17–19, 2017, volume 656 of Advances in Intelligent Systems and Computing, pages 176–186. Springer, 2017. ISBN 978-3-319-67228-1. doi:10.1007/978-3-319-67229-8_16.Artur Korniłowicz, Andrii Kryvolap, Mykola Nikitchenko, and Ievgen Ivanov. An approach to formalization of an extension of Floyd-Hoare logic. In Vadim Ermolayev, Nick Bassiliades, Hans-Georg Fill, Vitaliy Yakovyna, Heinrich C. Mayr, Vyacheslav Kharchenko, Vladimir Peschanenko, Mariya Shyshkina, Mykola Nikitchenko, and Aleksander Spivakovsky, editors, Proceedings of the 13th International Conference on ICT in Education, Research and Industrial Applications. Integration, Harmonization and Knowledge Transfer, Kyiv, Ukraine, May 15–18, 2017, volume 1844 of CEUR Workshop Proceedings, pages 504–523. CEUR-WS.org, 2017.Artur Korniłowicz, Ievgen Ivanov, and Mykola Nikitchenko. Kleene algebra of partial predicates. Formalized Mathematics, 26(1):11–20, 2018. doi:10.2478/forma-2018-0002.Andrii Kryvolap, Mykola Nikitchenko, and Wolfgang Schreiner. Extending Floyd-Hoare logic for partial pre- and postconditions. In Vadim Ermolayev, Heinrich C. Mayr, Mykola Nikitchenko, Aleksander Spivakovsky, and Grygoriy Zholtkevych, editors, Information and Communication Technologies in Education, Research, and Industrial Applications: 9th International Conference, ICTERI 2013, Kherson, Ukraine, June 19–22, 2013, Revised Selected Papers, pages 355–378. Springer International Publishing, 2013. ISBN 978-3-319-03998-5. doi:10.1007/978-3-319-03998-5_18.Volodymyr G. Skobelev, Mykola Nikitchenko, and Ievgen Ivanov. On algebraic properties of nominative data and functions. In Vadim Ermolayev, Heinrich C. Mayr, Mykola Nikitchenko, Aleksander Spivakovsky, and Grygoriy Zholtkevych, editors, Information and Communication Technologies in Education, Research, and Industrial Applications – 10th International Conference, ICTERI 2014, Kherson, Ukraine, June 9–12, 2014, Revised Selected Papers, volume 469 of Communications in Computer and Information Science, pages 117–138. Springer, 2014. ISBN 978-3-319-13205-1. doi:10.1007/978-3-319-13206-8_6.27218919

    IMPROVING THE DEPENDABILITY OF DESTINATION RECOMMENDATIONS USING INFORMATION ON SOCIAL ASPECTS

    Get PDF
    Prior knowledge of the social aspects of prospective destinations can be very influential in making travel destination decisions, especially in instances where social concerns do exist about specific destinations. In this paper, we describe the implementation of an ontology-enabled Hybrid Destination Recommender System (HDRS) that leverages an ontological description of five specific social attributes of major Nigerian cities, and hybrid architecture of content-based and case-based filtering techniques to generate personalised top-n destination recommendations. An empirical usability test was conducted on the system, which revealed that the dependability of recommendations from Destination Recommender Systems (DRS) could be improved if the semantic representation of social attributes information of destinations is made a factor in the destination recommendation process
    corecore