67,725 research outputs found

    Self-adaptive unobtrusive interactions of mobile computing systems

    Full text link
    [EN] In Pervasive Computing environments, people are surrounded by a lot of embedded services. Since pervasive devices, such as mobile devices, have become a key part of our everyday life, they enable users to always be connected to the environment, making demands on one of the most valuable resources of users: human attention. A challenge of the mobile computing systems is regulating the request for users¿ attention. In other words, service interactions should behave in a considerate manner by taking into account the degree to which each service intrudes on the user¿s mind (i.e., the degree of obtrusiveness). The main goal of this paper is to introduce self-adaptive capabilities in mobile computing systems in order to provide non-disturbing interactions. We achieve this by means of an software infrastructure that automatically adapts the service interaction obtrusiveness according to the user¿s context. This infrastructure works from a set of high-level models that define the unobtrusive adaptation behavior and its implication with the interaction resources in a technology-independent way. Our infrastructure has been validated through several experiments to assess its correctness, performance, and the achieved user experience through a user study.This work has been developed with the support of MINECO under the project SMART-ADAPT TIN2013-42981-P, and co-financed by the Generalitat Valenciana under the postdoctoral fellowship APOSTD/2016/042.Gil Pascual, M.; Pelechano Ferragud, V. (2017). Self-adaptive unobtrusive interactions of mobile computing systems. Journal of Ambient Intelligence and Smart Environments. 9(6):659-688. https://doi.org/10.3233/AIS-170463S65968896Aleksy, M., Butter, T., & Schader, M. (2008). Context-Aware Loading for Mobile Applications. Lecture Notes in Computer Science, 12-20. doi:10.1007/978-3-540-85693-1_3Y. Bachvarova, B. van Dijk and A. Nijholt, Towards a unified knowledge-based approach to modality choice, in: Proc. Workshop on Multimodal Output Generation (MOG), 2007, pp. 5–15.Barkhuus, L., & Dey, A. (2003). Is Context-Aware Computing Taking Control away from the User? Three Levels of Interactivity Examined. Lecture Notes in Computer Science, 149-156. doi:10.1007/978-3-540-39653-6_12Bellotti, V., & Edwards, K. (2001). Intelligibility and Accountability: Human Considerations in Context-Aware Systems. Human–Computer Interaction, 16(2-4), 193-212. doi:10.1207/s15327051hci16234_05D. Benavides, P. Trinidad and A. Ruiz-Cortés, Automated reasoning on feature models, in: Proceedings of the 17th International Conference on Advanced Information Systems Engineering, CAiSE’05, Springer-Verlag, Berlin, 2005, pp. 491–503.Bernsen, N. O. (1994). Foundations of multimodal representations: a taxonomy of representational modalities. Interacting with Computers, 6(4), 347-371. doi:10.1016/0953-5438(94)90008-6Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J., Nicklas, D., Ranganathan, A., & Riboni, D. (2010). A survey of context modelling and reasoning techniques. Pervasive and Mobile Computing, 6(2), 161-180. doi:10.1016/j.pmcj.2009.06.002Blumendorf, M., Lehmann, G., & Albayrak, S. (2010). Bridging models and systems at runtime to build adaptive user interfaces. Proceedings of the 2nd ACM SIGCHI symposium on Engineering interactive computing systems - EICS ’10. doi:10.1145/1822018.1822022D.M. Brown, Communicating Design: Developing Web Site Documentation for Design and Planning, 2nd edn, New Riders Press, 2010.J. Bruin, Statistical Analyses Using SPSS, 2011, http://www.ats.ucla.edu/stat/spss/whatstat/whatstat.htm#1sampt.J. Cámara, G. Moreno and D. Garlan, Reasoning about human participation in self-adaptive systems, in: SEAMS 2015, 2015, pp. 146–156.Campbell, A., & Choudhury, T. (2012). From Smart to Cognitive Phones. IEEE Pervasive Computing, 11(3), 7-11. doi:10.1109/mprv.2012.41Y. Cao, M. Theune and A. Nijholt, Modality effects on cognitive load and performance in high-load information presentation, in: Proceedings of the 14th International Conference on Intelligent User Interfaces, IUI’09, ACM, New York, 2009, pp. 335–344.Chang, F., & Ren, J. (2007). Validating system properties exhibited in execution traces. Proceedings of the twenty-second IEEE/ACM international conference on Automated software engineering - ASE ’07. doi:10.1145/1321631.1321723H. Chen and J.P. Black, A quantitative approach to non-intrusive computing, in: Mobiquitous’08: Proceedings of the 5th Annual International Conference on Mobile and Ubiquitous Systems, ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), ICST, Brussels, 2008, pp. 1–10.Chittaro, L. (2010). Distinctive aspects of mobile interaction and their implications for the design of multimodal interfaces. Journal on Multimodal User Interfaces, 3(3), 157-165. doi:10.1007/s12193-010-0036-2Clerckx, T., Vandervelpen, C., & Coninx, K. (2008). Task-Based Design and Runtime Support for Multimodal User Interface Distribution. Lecture Notes in Computer Science, 89-105. doi:10.1007/978-3-540-92698-6_6Cook, D. J., & Das, S. K. (2012). Pervasive computing at scale: Transforming the state of the art. Pervasive and Mobile Computing, 8(1), 22-35. doi:10.1016/j.pmcj.2011.10.004Cornelissen, B., Zaidman, A., van Deursen, A., Moonen, L., & Koschke, R. (2009). A Systematic Survey of Program Comprehension through Dynamic Analysis. IEEE Transactions on Software Engineering, 35(5), 684-702. doi:10.1109/tse.2009.28Czarnecki, K. (2004). Generative Software Development. Lecture Notes in Computer Science, 321-321. doi:10.1007/978-3-540-28630-1_33M. de Sá, C. Duarte, L. Carriço and T. Reis, Designing mobile multimodal applications, in: Information Science Reference, 2010, pp. 106–136, Chapter 5.C. Duarte and L. Carriço, A conceptual framework for developing adaptive multimodal applications, in: Proceedings of the 11th International Conference on Intelligent User Interfaces, IUI’06, ACM, New York, 2006, pp. 132–139.Evers, C., Kniewel, R., Geihs, K., & Schmidt, L. (2014). The user in the loop: Enabling user participation for self-adaptive applications. Future Generation Computer Systems, 34, 110-123. doi:10.1016/j.future.2013.12.010Fagin, R., Halpern, J. Y., & Megiddo, N. (1990). A logic for reasoning about probabilities. Information and Computation, 87(1-2), 78-128. doi:10.1016/0890-5401(90)90060-uFerscha, A. (2012). 20 Years Past Weiser: What’s Next? IEEE Pervasive Computing, 11(1), 52-61. doi:10.1109/mprv.2011.78Floch, J., Frà, C., Fricke, R., Geihs, K., Wagner, M., Lorenzo, J., … Scholz, U. (2012). Playing MUSIC - building context-aware and self-adaptive mobile applications. Software: Practice and Experience, 43(3), 359-388. doi:10.1002/spe.2116Gibbs, W. W. (2005). Considerate Computing. Scientific American, 292(1), 54-61. doi:10.1038/scientificamerican0105-54Gil, M., Giner, P., & Pelechano, V. (2011). Personalization for unobtrusive service interaction. Personal and Ubiquitous Computing, 16(5), 543-561. doi:10.1007/s00779-011-0414-0Gil Pascual, M. (s. f.). Adapting Interaction Obtrusiveness: Making Ubiquitous Interactions Less Obnoxious. A Model Driven Engineering approach. doi:10.4995/thesis/10251/31660Haapalainen, E., Kim, S., Forlizzi, J. F., & Dey, A. K. (2010). Psycho-physiological measures for assessing cognitive load. Proceedings of the 12th ACM international conference on Ubiquitous computing - Ubicomp ’10. doi:10.1145/1864349.1864395Hallsteinsen, S., Geihs, K., Paspallis, N., Eliassen, F., Horn, G., Lorenzo, J., … Papadopoulos, G. A. (2012). A development framework and methodology for self-adapting applications in ubiquitous computing environments. Journal of Systems and Software, 85(12), 2840-2859. doi:10.1016/j.jss.2012.07.052Hassenzahl, M. (2004). The Interplay of Beauty, Goodness, and Usability in Interactive Products. Human-Computer Interaction, 19(4), 319-349. doi:10.1207/s15327051hci1904_2Hassenzahl, M., & Tractinsky, N. (2006). User experience - a research agenda. Behaviour & Information Technology, 25(2), 91-97. doi:10.1080/01449290500330331Ho, J., & Intille, S. S. (2005). Using context-aware computing to reduce the perceived burden of interruptions from mobile devices. Proceedings of the SIGCHI conference on Human factors in computing systems - CHI ’05. doi:10.1145/1054972.1055100Horvitz, E., Kadie, C., Paek, T., & Hovel, D. (2003). Models of attention in computing and communication. Communications of the ACM, 46(3), 52. doi:10.1145/636772.636798Horvitz, E., Koch, P., Sarin, R., Apacible, J., & Subramani, M. (2005). Bayesphone: Precomputation of Context-Sensitive Policies for Inquiry and Action in Mobile Devices. Lecture Notes in Computer Science, 251-260. doi:10.1007/11527886_33Kephart, J. O., & Chess, D. M. (2003). The vision of autonomic computing. Computer, 36(1), 41-50. doi:10.1109/mc.2003.1160055Korpipaa, P., Malm, E.-J., Rantakokko, T., Kyllonen, V., Kela, J., Mantyjarvi, J., … Kansala, I. (2006). Customizing User Interaction in Smart Phones. IEEE Pervasive Computing, 5(3), 82-90. doi:10.1109/mprv.2006.49S. Lemmelä, A. Vetek, K. Mäkelä and D. Trendafilov, Designing and evaluating multimodal interaction for mobile contexts, in: Proceedings of the 10th International Conference on Multimodal Interfaces, ICMI’08, ACM, New York, 2008, pp. 265–272.Lim, B. Y. (2010). Improving trust in context-aware applications with intelligibility. Proceedings of the 12th ACM international conference adjunct papers on Ubiquitous computing - Ubicomp ’10. doi:10.1145/1864431.1864491J.-Y. Mao, K. Vredenburg, P.W. Smith and T. Carey, User-centered design methods in practice: A survey of the state of the art, in: Proceedings of the 2001 Conference of the Centre for Advanced Studies on Collaborative Research, CASCON’01, IBM Press, 2001, p. 12.Maoz, S. (2009). Using Model-Based Traces as Runtime Models. Computer, 42(10), 28-36. doi:10.1109/mc.2009.336Mayer, R. E., & Moreno, R. (2003). Nine Ways to Reduce Cognitive Load in Multimedia Learning. Educational Psychologist, 38(1), 43-52. doi:10.1207/s15326985ep3801_6Motti, V. G., & Vanderdonckt, J. (2013). A computational framework for context-aware adaptation of user interfaces. IEEE 7th International Conference on Research Challenges in Information Science (RCIS). doi:10.1109/rcis.2013.6577709R. Murch, Autonomic Computing, IBM Press, 2004.Obrenovic, Z., Abascal, J., & Starcevic, D. (2007). Universal accessibility as a multimodal design issue. Communications of the ACM, 50(5), 83-88. doi:10.1145/1230819.1241668Patterson, D. J., Baker, C., Ding, X., Kaufman, S. J., Liu, K., & Zaldivar, A. (2008). Online everywhere. Proceedings of the 10th international conference on Ubiquitous computing - UbiComp ’08. doi:10.1145/1409635.1409645Pielot, M., de Oliveira, R., Kwak, H., & Oliver, N. (2014). Didn’t you see my message? Proceedings of the 32nd annual ACM conference on Human factors in computing systems - CHI ’14. doi:10.1145/2556288.2556973Poppinga, B., Heuten, W., & Boll, S. (2014). Sensor-Based Identification of Opportune Moments for Triggering Notifications. IEEE Pervasive Computing, 13(1), 22-29. doi:10.1109/mprv.2014.15S. Ramchurn, B. Deitch, M. Thompson, D. De Roure, N. Jennings and M. Luck, Minimising intrusiveness in pervasive computing environments using multi-agent negotiation, in: Mobile and Ubiquitous Systems: Networking and Services, MOBIQUITOUS 2004. The First Annual International Conference on, 2004, pp. 364–371.C. Roda, Human Attention and Its Implications for Human-Computer Interaction, Cambridge University Press, 2011.S. Rosenthal, A.K. Dey and M. Veloso, Using decision-theoretic experience sampling to build personalized mobile phone interruption models, in: Proceedings of the 9th International Conference on Pervasive Computing, Pervasive 2011, Springer-Verlag, Berlin, 2011, pp. 170–187.E. Rukzio, K. Leichtenstern and V. Callaghan, An experimental comparison of physical mobile interaction techniques: Touching, pointing and scanning, in: 8th International Conference on Ubiquitous Computing, UbiComp 2006, Orange County, California, 2006.Serral, E., Valderas, P., & Pelechano, V. (2010). Towards the Model Driven Development of context-aware pervasive systems. Pervasive and Mobile Computing, 6(2), 254-280. doi:10.1016/j.pmcj.2009.07.006D. Siewiorek, A. Smailagic, J. Furukawa, A. Krause, N. Moraveji, K. Reiger, J. Shaffer and F.L. Wong, Sensay: A context-aware mobile phone, in: Proceedings of the 7th IEEE International Symposium on Wearable Computers, ISWC’03, IEEE Computer Society, Washington, 2003, p. 248.Tedre, M. (2006). What should be automated? Proceedings of the 1st ACM international workshop on Human-centered multimedia - HCM ’06. doi:10.1145/1178745.1178753M. Valtonen, A.-M. Vainio and J. Vanhala, Proactive and adaptive fuzzy profile control for mobile phones, in: IEEE International Conference on Pervasive Computing and Communications, 2009, PerCom, 2009, pp. 1–3.Vastenburg, M. H., Keyson, D. V., & de Ridder, H. (2007). Considerate home notification systems: a field study of acceptability of notifications in the home. Personal and Ubiquitous Computing, 12(8), 555-566. doi:10.1007/s00779-007-0176-xWarnock, D., McGee-Lennon, M., & Brewster, S. (2011). The Role of Modality in Notification Performance. Lecture Notes in Computer Science, 572-588. doi:10.1007/978-3-642-23771-3_43Weiser, M., & Brown, J. S. (1997). The Coming Age of Calm Technology. Beyond Calculation, 75-85. doi:10.1007/978-1-4612-0685-9_6Van Woensel, W., Gil, M., Casteleyn, S., Serral, E., & Pelechano, V. (2013). Adapting the Obtrusiveness of Service Interactions in Dynamically Discovered Environments. Mobile and Ubiquitous Systems: Computing, Networking, and Services, 250-262. doi:10.1007/978-3-642-40238-8_2

    Security in Pervasive Computing: Current Status and Open Issues

    Get PDF
    Million of wireless device users are ever on the move, becoming more dependent on their PDAs, smart phones, and other handheld devices. With the advancement of pervasive computing, new and unique capabilities are available to aid mobile societies. The wireless nature of these devices has fostered a new era of mobility. Thousands of pervasive devices are able to arbitrarily join and leave a network, creating a nomadic environment known as a pervasive ad hoc network. However, mobile devices have vulnerabilities, and some are proving to be challenging. Security in pervasive computing is the most critical challenge. Security is needed to ensure exact and accurate confidentiality, integrity, authentication, and access control, to name a few. Security for mobile devices, though still in its infancy, has drawn the attention of various researchers. As pervasive devices become incorporated in our day-to-day lives, security will increasingly becoming a common concern for all users - - though for most it will be an afterthought, like many other computing functions. The usability and expansion of pervasive computing applications depends greatly on the security and reliability provided by the applications. At this critical juncture, security research is growing. This paper examines the recent trends and forward thinking investigation in several fields of security, along with a brief history of previous accomplishments in the corresponding areas. Some open issues have been discussed for further investigation

    Customizing smart environments: a tabletop approach

    Full text link
    Smart environments are becoming a reality in our society and the number of intelligent devices integrated in these spaces is in-creasing very rapidly. As the combination of intelligent elements will open a wide range of new opportunities to make our lives easier, final users should be provided with a simplified method of handling complex intelligent features. Specifying behavior in these environments can be difficult for non-experts, so that more efforts should be directed towards easing the customization tasks. This work presents an entirely visual rule editor based on dataflow expressions for interactive tabletops which allows be-havior to be specified in smart environments. An experiment was carried out aimed at evaluating the usability of the editor in terms of non-programmers understanding of the abstractions and concepts involved in the rule model, ease of use of the pro-posed visual interface and the suitability of the interaction mechanisms implemented in the editing tool. The study revealed that users with no previous programming experience were able to master the proposed rule model and editing tool for specifying be-havior in the context of a smart home, even though some minor usability issues were detected.We would like to thank all the volunteers that participated in the empirical study. Our thanks are also due to the ASIC/Polimedia team for their computer hardware support. This work was partially funded by the Spanish Ministry of Science and Innovation under the National R&D&I Program within the project CreateWorlds (TIN2010-20488). It also received support from a postdoctoral fellowship within the VALi+d Program of the Conselleria d'Educacio, Cultura I Esport (Generalitat Valenciana) awarded to Alejandro Catala (APOSTD/2013/013). The work of Patricia Pons has been supported by the Universitat Politecnica de Valencia under the "Beca de Excelencia" program, and currently by an FPU fellowship from the Spanish Ministry of Education, Culture and Sports (FPU13/03831).Pons Tomás, P.; Catalá Bolós, A.; Jaén Martínez, FJ. (2015). Customizing smart environments: a tabletop approach. Journal of Ambient Intelligence and Smart Environments. 7(4):511-533. https://doi.org/10.3233/AIS-150328S51153374[1]C. Becker, M. Handte, G. Schiele and K. Rothermel, PCOM – a component system for pervasive computing, in: Proc. of the Second IEEE International Conference on Pervasive Computing and Communications (PerCom’04), IEEE Computer Society, Washington, DC, USA, 2004, pp. 67–76.Bhatti, Z. W., Naqvi, N. Z., Ramakrishnan, A., Preuveneers, D., & Berbers, Y. (2014). Learning distributed deployment and configuration trade-offs for context-aware applications in Intelligent Environments. Journal of Ambient Intelligence and Smart Environments, 6(5), 541-559. doi:10.3233/ais-140274Bonino, D., & Corno, F. (2011). What would you ask to your home if it were intelligent? Exploring user expectations about next-generation homes. Journal of Ambient Intelligence and Smart Environments, 3(2), 111-126. doi:10.3233/ais-2011-0099[4]D. Bonino, F. Corno and L. Russis, A user-friendly interface for rules composition in intelligent environments, in: Ambient Intelligence – Software and Applications, Advances in Intelligent and Soft Computing, Vol. 92, Springer, Berlin, Heidelberg, 2011, pp. 213–217.[5]X. Carandang and J. Campbell, The design of a tangible user interface for a real-time strategy game, in: Proc. of the 34th International Conference on Information Systems (ICIS 2013), Association for Information Systems (AIS), 2013, pp. 3781–3790.Catalá, A., Garcia-Sanjuan, F., Jaen, J., & Mocholi, J. A. (2012). TangiWheel: A Widget for Manipulating Collections on Tabletop Displays Supporting Hybrid Input Modality. Journal of Computer Science and Technology, 27(4), 811-829. doi:10.1007/s11390-012-1266-4Catala, A., Pons, P., Jaen, J., Mocholi, J. A., & Navarro, E. (2013). A meta-model for dataflow-based rules in smart environments: Evaluating user comprehension and performance. Science of Computer Programming, 78(10), 1930-1950. doi:10.1016/j.scico.2012.06.010[8]C. Chen, Y. Xu, K. Li and S. Helal, Reactive programming optimizations in pervasive computing, in: Proc. of the 2010 10th IEEE/IPSJ International Symposium on Applications and the Internet (SAINT’10), IEEE Computer Society, Washington, DC, USA, 2010, pp. 96–104.Cook, D. J., Augusto, J. C., & Jakkula, V. R. (2009). Ambient intelligence: Technologies, applications, and opportunities. Pervasive and Mobile Computing, 5(4), 277-298. doi:10.1016/j.pmcj.2009.04.001Dey, A. K. (2009). Modeling and intelligibility in ambient environments. Journal of Ambient Intelligence and Smart Environments, 1(1), 57-62. doi:10.3233/ais-2009-0008[11]A.K. Dey, T. Sohn, S. Streng and J. Kodama, iCAP: Interactive prototyping of context-aware applications, in: Proc. of Pervasive Computing, Lecture Notes in Computer Science, Vol. 3968, Springer-Verlag, Berlin, Heidelberg, 2006, pp. 254–271.[12]N. Díaz, J. Lilius, M. Pegalajar and M. Delgado, Rapid prototyping of semantic applications in smart spaces with a visual rule language, in: Proc. of the 2013 ACM Conference on Pervasive and Ubiquitous Computing Adjunct Publication, ACM, New York, NY, USA, 2013, pp. 1335–1338.Gámez, N., & Fuentes, L. (2011). FamiWare: a family of event-based middleware for ambient intelligence. Personal and Ubiquitous Computing, 15(4), 329-339. doi:10.1007/s00779-010-0354-0García-Herranz, M., Alamán, X., & Haya, P. A. (2010). Easing the Smart Home: A rule-based language and multi-agent structure for end user development in Intelligent Environments. Journal of Ambient Intelligence and Smart Environments, 2(4), 437-438. doi:10.3233/ais-2010-0085[17]J. Good, K. Howland and K. Nicholson, Young people’s descriptions of computational rules in role-playing games: An empirical study, in: Proc. of the 2010 IEEE Symposium on Visual Languages and Human-Centric Computing, IEEE, 2010, pp. 67–74.Gouin-Vallerand, C., Abdulrazak, B., Giroux, S., & Dey, A. K. (2013). A context-aware service provision system for smart environments based on the user interaction modalities. Journal of Ambient Intelligence and Smart Environments, 5(1), 47-64. doi:10.3233/ais-120190[19]S. Holloway and C. Julien, The case for end-user programming of ubiquitous computing environments, in: Proc. of the FSE/SDP Workshop on Future of Software Engineering Research (FoSER’10), ACM, New York, NY, USA, 2010, pp. 167–172.Horn, M. S., Crouser, R. J., & Bers, M. U. (2011). Tangible interaction and learning: the case for a hybrid approach. Personal and Ubiquitous Computing, 16(4), 379-389. doi:10.1007/s00779-011-0404-2[21]M.S. Horn, E.T. Solovey, R.J. Crouser and R.J.K. Jacob, Comparing the use of tangible and graphical programming languages for informal science education, in: Proc. of the SIGCHI Conference on Human Factors in Computing Systems (CHI’09), ACM, New York, NY, USA, 2009, pp. 975–984.Kelleher, C., & Pausch, R. (2005). Lowering the barriers to programming. ACM Computing Surveys, 37(2), 83-137. doi:10.1145/1089733.1089734[23]J. Lee, L. Garduño, E. Walker and W. Burleson, A tangible programming tool for creation of context-aware applications, in: Proc. of the 2013 ACM International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp’13), ACM, New York, NY, USA, 2013, pp. 391–400.Lézoray, J.-B., Segarra, M.-T., Phung-Khac, A., Thépaut, A., Gilliot, J.-M., & Beugnard, A. (2011). A design process enabling adaptation in pervasive heterogeneous contexts. Personal and Ubiquitous Computing, 15(4), 353-363. doi:10.1007/s00779-010-0356-y[25]B.Y. Lim and A.K. Dey, Assessing demand for intelligibility in context-aware applications, in: Proc. of the 11th International Conference on Ubiquitous Computing (Ubicomp’09), ACM, New York, NY, USA, 2009, pp. 195–204.[26]B.Y. Lim and A.K. Dey, Evaluating Intelligibility usage and usefulness in a context-aware application, in: Proc. of the 15th International Conference on Human-Computer, Lecture Notes in Computer Science, Vol. 8008, Springer, Berlin, Heidelberg, 2013, pp. 92–101.[28]P. Marshall, Do tangible interfaces enhance learning? in: Proc. of the 1st International Conference on Tangible and Embedded Interaction (TEI’07), ACM, New York, NY, USA, 2007, pp. 163–170.[30]C. Maternaghan and K.J. Turner, A configurable telecare system, in: Proc. of the 4th International Conference on Pervasive Technologies Related to Assistive Environments (PETRA’11), ACM, New York, NY, USA, 2011, pp. 14:1–14:8.[31]D.A. Norman, The Invisible Computer, MITT Press, Cambridge, MA, USA, 1998.PANE, J. F., RATANAMAHATANA, C. «ANN», & MYERS, B. A. (2001). Studying the language and structure in non-programmers’ solutions to programming problems. International Journal of Human-Computer Studies, 54(2), 237-264. doi:10.1006/ijhc.2000.0410[33]P. Pons, A. Catala, J. Jaen and J.A. Mocholi, DafRule: Un modelo de reglas enriquecido mediante flujos de datos para la definición visual de comportamiento reactivo de entidades virtuales, in: Actas de las Jornadas de Ingeniería del Software y Bases de Datos (JISBD 2011), 2011, 989–1002.Rasch, K. (2014). An unsupervised recommender system for smart homes. Journal of Ambient Intelligence and Smart Environments, 6(1), 21-37. doi:10.3233/ais-130242[35]K. Ryall, C. Forlines, C. Shen and M.R. Morris, Exploring the effects of group size and table size on interactions with tabletop shared-display groupware, in: Proc. of the 2004 ACM Conference on Computer Supported Cooperative Work, ACM, New York, NY, USA, 2004, pp. 284–293.Schmidt, A. (2000). Implicit human computer interaction through context. Personal Technologies, 4(2-3), 191-199. doi:10.1007/bf01324126[37]S.D. Scott, M. Sheelagh, T. Carpendale and K.M. Inkpen, Territoriality in collaborative tabletop workspaces, in: Proc. of the 2004 ACM Conference on Computer Supported Cooperative Work, ACM, New York, NY, USA, 2004, pp. 294–303.Sapounidis, T., & Demetriadis, S. (2013). Tangible versus graphical user interfaces for robot programming: exploring cross-age children’s preferences. Personal and Ubiquitous Computing, 17(8), 1775-1786. doi:10.1007/s00779-013-0641-7Shadbolt, N. (2003). Brain power. IEEE Intelligent Systems, 18(3), 2-3. doi:10.1109/mis.2003.1200718Shafti, L. S., Haya, P. A., García-Herranz, M., & Pérez, E. (2013). Inferring ECA-based rules for ambient intelligence using evolutionary feature extraction. Journal of Ambient Intelligence and Smart Environments, 5(6), 563-587. doi:10.3233/ais-130232[41]A. Strawhacker, A. Sullivan and M.U. Bers, TUI, GUI, HUI: Is a bimodal interface truly worth the sum of its parts? in: Proc. of the 12th International Conference on Interaction Design and Children, ACM, New York, NY, USA, 2013, pp. 309–312.Sylla, C., Branco, P., Coutinho, C., & Coquet, E. (2011). TUIs vs. GUIs: comparing the learning potential with preschoolers. Personal and Ubiquitous Computing, 16(4), 421-432. doi:10.1007/s00779-011-0407-zTeruel, M. A., Navarro, E., López-Jaquero, V., Montero, F., Jaen, J., & González, P. (2012). Analyzing the understandability of Requirements Engineering languages for CSCW systems: A family of experiments. Information and Software Technology, 54(11), 1215-1228. doi:10.1016/j.infsof.2012.06.001[44]E. Tse, J. Histon, S.D. Scott and S. Greenberg, Avoiding interference: How people use spatial separation and partitioning in SDG workspaces, in: Proc. of the 2004 ACM Conference on Computer Supported Cooperative Work, ACM, New York, NY, USA, 2004, pp. 252–261.[45]P. Tuddenham, D. Kirk and S. Izadi, Graspables revisited: Multi-touch vs. tangible input for tabletop displays in acquisition and manipulation tasks, in: Proc. of the SIGCHI Conference on Human Factors in Computing Systems (CHI’10), ACM, New York, NY, USA, 2010, pp. 2223–2232.[46]A. Uribarren, J. Parra, R. Iglesias, J.P. Uribe and D. López de Ipiña, A middleware platform for application configuration, adaptation and interoperability, in: Proc. of the 2008 Second IEEE International Conference on Self-Adaptive and Self-Organizing Systems Workshops, IEEE Computer Society, Washington, DC, USA, 2008, pp. 162–167.Weiser, M. (1991). The Computer for the 21st Century. Scientific American, 265(3), 94-104. doi:10.1038/scientificamerican0991-94[48]C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell and A. Wesslén, Experimentation in Software Engineering: An Introduction, 1st edn, Kluwer Academic Publishers, Norwell, MA, USA, 2000.Zuckerman, O., & Gal-Oz, A. (2013). To TUI or not to TUI: Evaluating performance and preference in tangible vs. graphical user interfaces. International Journal of Human-Computer Studies, 71(7-8), 803-820. doi:10.1016/j.ijhcs.2013.04.00

    Context-aware Authorization in Highly Dynamic Environments

    Get PDF
    Highly dynamic computing environments, like ubiquitous and pervasive computing environments, require frequent adaptation of applications. Context is a key to adapt suiting user needs. On the other hand, standard access control trusts users once they have authenticated, despite the fact that they may reach unauthorized contexts. We analyse how taking into account dynamic information like context in the authorization subsystem can improve security, and how this new access control applies to interaction patterns, like messaging or eventing. We experiment and validate our approach using context as an authorization factor for eventing in Web service for device (like UPnP or DPWS), in smart home security

    Context for Ubiquitous Data Management

    Get PDF
    In response to the advance of ubiquitous computing technologies, we believe that for computer systems to be ubiquitous, they must be context-aware. In this paper, we address the impact of context-awareness on ubiquitous data management. To do this, we overview different characteristics of context in order to develop a clear understanding of context, as well as its implications and requirements for context-aware data management. References to recent research activities and applicable techniques are also provided

    Context Aware Computing for The Internet of Things: A Survey

    Get PDF
    As we are moving towards the Internet of Things (IoT), the number of sensors deployed around the world is growing at a rapid pace. Market research has shown a significant growth of sensor deployments over the past decade and has predicted a significant increment of the growth rate in the future. These sensors continuously generate enormous amounts of data. However, in order to add value to raw sensor data we need to understand it. Collection, modelling, reasoning, and distribution of context in relation to sensor data plays critical role in this challenge. Context-aware computing has proven to be successful in understanding sensor data. In this paper, we survey context awareness from an IoT perspective. We present the necessary background by introducing the IoT paradigm and context-aware fundamentals at the beginning. Then we provide an in-depth analysis of context life cycle. We evaluate a subset of projects (50) which represent the majority of research and commercial solutions proposed in the field of context-aware computing conducted over the last decade (2001-2011) based on our own taxonomy. Finally, based on our evaluation, we highlight the lessons to be learnt from the past and some possible directions for future research. The survey addresses a broad range of techniques, methods, models, functionalities, systems, applications, and middleware solutions related to context awareness and IoT. Our goal is not only to analyse, compare and consolidate past research work but also to appreciate their findings and discuss their applicability towards the IoT.Comment: IEEE Communications Surveys & Tutorials Journal, 201
    corecore