69,487 research outputs found

    Genetic determinants of cortical structure (thickness, surface area and volumes) among disease free adults in the CHARGE Consortium

    Get PDF
    Cortical thickness, surface area and volumes (MRI cortical measures) vary with age and cognitive function, and in neurological and psychiatric diseases. We examined heritability, genetic correlations and genome-wide associations of cortical measures across the whole cortex, and in 34 anatomically predefined regions. Our discovery sample comprised 22,824 individuals from 20 cohorts within the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium and the United Kingdom Biobank. Significant associations were replicated in the Enhancing Neuroimaging Genetics through Meta-analysis (ENIGMA) consortium, and their biological implications explored using bioinformatic annotation and pathway analyses. We identified genetic heterogeneity between cortical measures and brain regions, and 160 genome-wide significant associations pointing to wnt/β-catenin, TGF-β and sonic hedgehog pathways. There was enrichment for genes involved in anthropometric traits, hindbrain development, vascular and neurodegenerative disease and psychiatric conditions. These data are a rich resource for studies of the biological mechanisms behind cortical development and aging

    User-centered visual analysis using a hybrid reasoning architecture for intensive care units

    Get PDF
    One problem pertaining to Intensive Care Unit information systems is that, in some cases, a very dense display of data can result. To ensure the overview and readability of the increasing volumes of data, some special features are required (e.g., data prioritization, clustering, and selection mechanisms) with the application of analytical methods (e.g., temporal data abstraction, principal component analysis, and detection of events). This paper addresses the problem of improving the integration of the visual and analytical methods applied to medical monitoring systems. We present a knowledge- and machine learning-based approach to support the knowledge discovery process with appropriate analytical and visual methods. Its potential benefit to the development of user interfaces for intelligent monitors that can assist with the detection and explanation of new, potentially threatening medical events. The proposed hybrid reasoning architecture provides an interactive graphical user interface to adjust the parameters of the analytical methods based on the users' task at hand. The action sequences performed on the graphical user interface by the user are consolidated in a dynamic knowledge base with specific hybrid reasoning that integrates symbolic and connectionist approaches. These sequences of expert knowledge acquisition can be very efficient for making easier knowledge emergence during a similar experience and positively impact the monitoring of critical situations. The provided graphical user interface incorporating a user-centered visual analysis is exploited to facilitate the natural and effective representation of clinical information for patient care

    Barry Smith an sich

    Get PDF
    Festschrift in Honor of Barry Smith on the occasion of his 65th Birthday. Published as issue 4:4 of the journal Cosmos + Taxis: Studies in Emergent Order and Organization. Includes contributions by Wolfgang Grassl, Nicola Guarino, John T. Kearns, Rudolf Lüthe, Luc Schneider, Peter Simons, Wojciech Żełaniec, and Jan Woleński

    The journals of importance to UK clinicians: A questionnaire survey of surgeons

    Get PDF
    Background: Peer-reviewed journals are seen as a major vehicle in the transmission of research findings to clinicians. Perspectives on the importance of individual journals vary and the use of impact factors to assess research is criticised. Other surveys of clinicians suggest a few key journals within a specialty, and sub-specialties, are widely read. Journals with high impact factors are not always widely read or perceived as important. In order to determine whether UK surgeons consider peer-reviewed journals to be important information sources and which journals they read and consider important to inform their clinical practice, we conducted a postal questionnaire survey and then compared the findings with those from a survey of US surgeons. Methods: A questionnaire survey sent to 2,660 UK surgeons asked which information sources they considered to be important and which peer-reviewed journals they read, and perceived as important, to inform their clinical practice. Comparisons were made with numbers of UK NHSfunded surgery publications, journal impact factors and other similar surveys. Results: Peer-reviewed journals were considered to be the second most important information source for UK surgeons. A mode of four journals read was found with academics reading more than non-academics. Two journals, the BMJ and the Annals of the Royal College of Surgeons of England, are prominent across all sub-specialties and others within sub-specialties. The British Journal of Surgery plays a key role within three sub-specialties. UK journals are generally preferred and readership patterns are influenced by membership journals. Some of the journals viewed by surgeons as being most important, for example the Annals of the Royal College of Surgeons of England, do not have high impact factors. Conclusion: Combining the findings from this study with comparable studies highlights the importance of national journals and of membership journals. Our study also illustrates the complexity of the link between the impact factors of journals and the importance of the journals to clinicians. This analysis potentially provides an additional basis on which to assess the role of different journals, and the published output from research

    Affective Medicine: a review of Affective Computing efforts in Medical Informatics

    Get PDF
    Background: Affective computing (AC) is concerned with emotional interactions performed with and through computers. It is defined as “computing that relates to, arises from, or deliberately influences emotions”. AC enables investigation and understanding of the relation between human emotions and health as well as application of assistive and useful technologies in the medical domain. Objectives: 1) To review the general state of the art in AC and its applications in medicine, and 2) to establish synergies between the research communities of AC and medical informatics. Methods: Aspects related to the human affective state as a determinant of the human health are discussed, coupled with an illustration of significant AC research and related literature output. Moreover, affective communication channels are described and their range of application fields is explored through illustrative examples. Results: The presented conferences, European research projects and research publications illustrate the recent increase of interest in the AC area by the medical community. Tele-home healthcare, AmI, ubiquitous monitoring, e-learning and virtual communities with emotionally expressive characters for elderly or impaired people are few areas where the potential of AC has been realized and applications have emerged. Conclusions: A number of gaps can potentially be overcome through the synergy of AC and medical informatics. The application of AC technologies parallels the advancement of the existing state of the art and the introduction of new methods. The amount of work and projects reviewed in this paper witness an ambitious and optimistic synergetic future of the affective medicine field

    Beyond Volume: The Impact of Complex Healthcare Data on the Machine Learning Pipeline

    Full text link
    From medical charts to national census, healthcare has traditionally operated under a paper-based paradigm. However, the past decade has marked a long and arduous transformation bringing healthcare into the digital age. Ranging from electronic health records, to digitized imaging and laboratory reports, to public health datasets, today, healthcare now generates an incredible amount of digital information. Such a wealth of data presents an exciting opportunity for integrated machine learning solutions to address problems across multiple facets of healthcare practice and administration. Unfortunately, the ability to derive accurate and informative insights requires more than the ability to execute machine learning models. Rather, a deeper understanding of the data on which the models are run is imperative for their success. While a significant effort has been undertaken to develop models able to process the volume of data obtained during the analysis of millions of digitalized patient records, it is important to remember that volume represents only one aspect of the data. In fact, drawing on data from an increasingly diverse set of sources, healthcare data presents an incredibly complex set of attributes that must be accounted for throughout the machine learning pipeline. This chapter focuses on highlighting such challenges, and is broken down into three distinct components, each representing a phase of the pipeline. We begin with attributes of the data accounted for during preprocessing, then move to considerations during model building, and end with challenges to the interpretation of model output. For each component, we present a discussion around data as it relates to the healthcare domain and offer insight into the challenges each may impose on the efficiency of machine learning techniques.Comment: Healthcare Informatics, Machine Learning, Knowledge Discovery: 20 Pages, 1 Figur
    corecore