120,713 research outputs found

    On the integration of digital technologies into mathematics classrooms

    Get PDF
    Trouche‘s (2003) presentation at the Third Computer Algebra in Mathematics Education Symposium focused on the notions of instrumental genesis and of orchestration: the former concerning the mutual transformation of learner and artefact in the course of constructing knowledge with technology; the latter concerning the problem of integrating technology into classroom practice. At the Symposium, there was considerable discussion of the idea of situated abstraction, which the current authors have been developing over the last decade. In this paper, we summarise the theory of instrumental genesis and attempt to link it with situated abstraction. We then seek to broaden Trouche‘s discussion of orchestration to elaborate the role of artefacts in the process, and describe how the notion of situated abstraction could be used to make sense of the evolving mathematical knowledge of a community as well as an individual. We conclude by elaborating the ways in which technological artefacts can provide shared means of mathematical expression, and discuss the need to recognise the diversity of student‘s emergent meanings for mathematics, and the legitimacy of mathematical expression that may be initially divergent from institutionalised mathematics

    Designing digital technologies and learning activities for different geometries

    No full text
    This chapter focuses on digital technologies and geometry education, a combination of topics that provides a suitable avenue for analysing closely the issues and challenges involved in designing and utilizing digital technologies for learning mathematics. In revealing these issues and challenges, the chapter examines the design of digital technologies and related forms of learning activities for a range of geometries, including Euclidean and co-ordinate geometries in two and three dimensions, and non-Euclidean geometries such as spherical, hyperbolic and fractal geometry. This analysis reveals the decisions that designers take when designing for different geometries on the flat computer screen. Such decisions are not only about the geometry but also about the learner in terms of supporting their perceptions of what are the key features of geometry

    Simulation modelling: Educational development roles for learning technologists

    Get PDF
    Simulation modelling was in the mainstream of CAL development in the 1980s when the late David Squires introduced this author to the Dynamic Modelling System. Since those early days, it seems that simulation modelling has drifted into a learning technology backwater to become a member of Laurillard's underutilized, ‘adaptive and productive’ media. Referring to her Conversational Framework, Laurillard constructs a pedagogic case for modelling as a productive student activity but provides few references to current practice and available resources. This paper seeks to complement her account by highlighting the pioneering initiatives of the Computers in the Curriculum Project and more recent developments in systems modelling within geographic and business education. The latter include improvements to system dynamics modelling programs such as STELLA¼, the publication of introductory textbooks, and the emergence of online resources. The paper indicates several ways in which modelling activities may be approached and identifies some educational development roles for learning technologists. The paper concludes by advocating simulation modelling as an exemplary use of learning technologies ‐ one that realizes their creative‐transformative potential

    Making mathematics phenomenal : Based on an Inaugural Professorial Lecture delivered at the Institute of Education, University of London, on 14 March 2012

    Get PDF
    Mathematics is often portrayed as an 'abstract' cerebral subject, beyond the reach of many. In response, research with digital technology has led to innovative design in which mathematics can be experienced to some extent like everyday phenomena. I examine how careful design can 'phenomenalise' mathematics - that is to say create mathematical artefacts that can be directly experienced to support not only engagement but also focus on key ideas. I argue that mathematical knowledge gained through interaction with suitably designed tools can prioritise powerful reasons for doing mathematics, imbuing it with a sort of utility and offering learners hooks on which they can gradually develop fluency and connected understanding. Illustrative examples are taken from conventional topics such as number, algebra, geometry and statistics but also from novel situations where mathematical methods are juxtaposed with social values. The suggestion that prioritising utility supports a more natural way of learning mathematics emerges directly from constructionist pedagogy and inferentialist philosophy

    Webbing and orchestration. Two interrelated views on digital tools in mathematics education

    Get PDF
    The integration of digital tools in mathematics education is considered both promising and problematic. To deal with this issue, notions of webbing and instrumental orchestration are developed. However, the two seemed to be disconnected, and having different cultural and theoretical roots. In this article, we investigate the distinct and joint journeys of these two theoretical perspectives. Taking some key moments in recent history as points of de- parture, we conclude that the two perspectives share an importance attributed to digital tools, and that initial differences, such as different views on the role of digital tools and the role of the teacher, have become more nuances. The two approaches share future chal- lenges to the organization of teachers'collaborative work and their use of digital resources.Comment: Teaching Mathematics and its Applications (2014) to be complete

    Raising awareness of the accessibility challenges in mathematics MOOCs

    Get PDF
    MOOCs provide learning environments that make it easier for learners to study from anywhere, at their own pace and with open access to content. This has revolutionised the field of eLearning, but accessibility continues to be a problem, even more so if we include the complexity of the STEM disciplines which have their own specific characteristics. This work presents an analysis of the accessibility of several MOOC platforms which provide courses in mathematics. We attempt to visualise the main web accessibility problems and challenges that disabled learners could face in taking these types of courses, both in general and specifically in the context of the subject of mathematics

    Next steps in implementing Kaput's research programme

    Get PDF
    We explore some key constructs and research themes initiated by Jim Kaput, and attempt to illuminate them further with reference to our own research. These 'design principles' focus on the evolution of digital representations since the early nineties, and we attempt to take forward our collective understanding of the cognitive and cultural affordances they offer. There are two main organising ideas for the paper. The first centres around Kaput's notion of outsourcing of processing power, and explores the implications of this for mathematical learning. We argue that a key component for design is to create visible, transparent views of outsourcing, a transparency without which there may be as many pitfalls as opportunities for mathematical learning. The second organising idea is that of communication, a key notion for Kaput, and the importance of designing for communication in ways that recognise the mutual influence of tools for communication and for mathematical expression
    • 

    corecore