537,874 research outputs found

    Decision making with Dempster-Shafer belief structure and the OWAWA operator

    Get PDF
    [EN] A new decision making model that uses the weighted average and the ordered weighted averaging (OWA) operator in the Dempster-Shafer belief structure is presented. Thus, we are able to represent the decision making problem considering objective and subjective information and the attitudinal character of the decision maker. For doing so, we use the ordered weighted averaging ¿ weighted average (OWAWA) operator. It is an aggregation operator that unifies the weighted average and the OWA in the same formulation. This approach is generalized by using quasi-arithmetic means and group decision making techniques. An application of the new approach in a group decision making problem concerning political management of a country is also developed.We would like to thank the anonymous reviewers for valuable comments that have improved the quality of the paper. Support from the Spanish Ministry of Education under project JC2009-00189 , the University of Barcelona (099311) and the European Commission (PIEFGA-2011-300062) is gratefully acknowledgedMerigó, JM.; Engemann, KJ.; Palacios Marqués, D. (2013). Decision making with Dempster-Shafer belief structure and the OWAWA operator. Technological and Economic Development of Economy. 19(sup 1):S100-S118. https://doi.org/10.3846/20294913.2013.869517SS100S11819sup 1Antuchevičienė, J., Zavadskas, E. K., & Zakarevičius, A. (2010). MULTIPLE CRITERIA CONSTRUCTION MANAGEMENT DECISIONS CONSIDERING RELATIONS BETWEEN CRITERIA / DAUGIATIKSLIAI STATYBOS VALDYMO SPRENDIMAI ATSIŽVELGIANT Į RODIKLIŲ TARPUSAVIO PRIKLAUSOMYBĘ. Technological and Economic Development of Economy, 16(1), 109-125. doi:10.3846/tede.2010.07Brauers, W. K. M., & Zavadskas, E. K. (2010). PROJECT MANAGEMENT BY MULTIMOORA AS AN INSTRUMENT FOR TRANSITION ECONOMIES / PROJEKTŲ VADYBA SU MULTIMOORA KAIP PRIEMONĖ PEREINAMOJO LAIKOTARPIO ŪKIAMS. Technological and Economic Development of Economy, 16(1), 5-24. doi:10.3846/tede.2010.01Dempster, A. P. (1967). Upper and Lower Probabilities Induced by a Multivalued Mapping. The Annals of Mathematical Statistics, 38(2), 325-339. doi:10.1214/aoms/1177698950ENGEMANN, K. J., MILLER, H. E., & YAGER, R. R. (1996). DECISION MAKING WITH BELIEF STRUCTURES: AN APPLICATION IN RISK MANAGEMENT. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 04(01), 1-25. doi:10.1142/s0218488596000020ENGEMANN, K. J., FILEV, D. P., & YAGER, R. R. (1996). MODELLING DECISION MAKING USING IMMEDIATE PROBABILITIES. International Journal of General Systems, 24(3), 281-294. doi:10.1080/03081079608945123Engemann, K. J., & Miller, H. E. (2009). Critical infrastructure and smart technology risk modelling using computational intelligence. International Journal of Business Continuity and Risk Management, 1(1), 91. doi:10.1504/ijbcrm.2009.028953Fodor, J., Marichal, J.-L., & Roubens, M. (1995). Characterization of the ordered weighted averaging operators. IEEE Transactions on Fuzzy Systems, 3(2), 236-240. doi:10.1109/91.388176Han, Z., & Liu, P. (2011). A FUZZY MULTI-ATTRIBUTE DECISION-MAKING METHOD UNDER RISK WITH UNKNOWN ATTRIBUTE WEIGHTS / NERAIŠKUSIS MAŽESNĖS RIZIKOS DAUGIATIKSLIS SPRENDIMŲ PRIĖMIMO METODAS SU NEŽINOMAIS PRISKIRIAMAIS REIKŠMINGUMAIS. Technological and Economic Development of Economy, 17(2), 246-258. doi:10.3846/20294913.2011.580575Keršulienė, V., Zavadskas, E. K., & Turskis, Z. (2010). SELECTION OF RATIONAL DISPUTE RESOLUTION METHOD BY APPLYING NEW STEP‐WISE WEIGHT ASSESSMENT RATIO ANALYSIS (SWARA). Journal of Business Economics and Management, 11(2), 243-258. doi:10.3846/jbem.2010.12Liu, P. (2009). MULTI‐ATTRIBUTE DECISION‐MAKING METHOD RESEARCH BASED ON INTERVAL VAGUE SET AND TOPSIS METHOD. Technological and Economic Development of Economy, 15(3), 453-463. doi:10.3846/1392-8619.2009.15.453-463Liu, P. (2011). A weighted aggregation operators multi-attribute group decision-making method based on interval-valued trapezoidal fuzzy numbers. Expert Systems with Applications, 38(1), 1053-1060. doi:10.1016/j.eswa.2010.07.144Merigó, J. M. (2011). A unified model between the weighted average and the induced OWA operator. Expert Systems with Applications, 38(9), 11560-11572. doi:10.1016/j.eswa.2011.03.034Merigó, J. M. (2012). The probabilistic weighted average and its application in multiperson decision making. International Journal of Intelligent Systems, 27(5), 457-476. doi:10.1002/int.21531Merigó, J. M., & Casanovas, M. (2009). Induced aggregation operators in decision making with the Dempster-Shafer belief structure. International Journal of Intelligent Systems, 24(8), 934-954. doi:10.1002/int.20368Merigó, J. M., & Casanovas, M. (2010). The uncertain induced quasi-arithmetic OWA operator. International Journal of Intelligent Systems, 26(1), 1-24. doi:10.1002/int.20444MERIGÓ, J. M., & CASANOVAS, M. (2011). THE UNCERTAIN GENERALIZED OWA OPERATOR AND ITS APPLICATION TO FINANCIAL DECISION MAKING. International Journal of Information Technology & Decision Making, 10(02), 211-230. doi:10.1142/s0219622011004300MERIGÓ, J. M., CASANOVAS, M., & MARTÍNEZ, L. (2010). LINGUISTIC AGGREGATION OPERATORS FOR LINGUISTIC DECISION MAKING BASED ON THE DEMPSTER-SHAFER THEORY OF EVIDENCE. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 18(03), 287-304. doi:10.1142/s0218488510006544MERIGO, J., & GILLAFUENTE, A. (2009). The induced generalized OWA operator. Information Sciences, 179(6), 729-741. doi:10.1016/j.ins.2008.11.013Merigó, J. M., & Gil-Lafuente, A. M. (2010). New decision-making techniques and their application in the selection of financial products. Information Sciences, 180(11), 2085-2094. doi:10.1016/j.ins.2010.01.028Merigó, J. M., & Wei, G. (2011). PROBABILISTIC AGGREGATION OPERATORS AND THEIR APPLICATION IN UNCERTAIN MULTI-PERSON DECISION-MAKING / TIKIMYBINIAI SUMAVIMO OPERATORIAI IR JŲ TAIKYMAS PRIIMANT GRUPINIUS SPRENDIMUS NEAPIBRĖŽTOJE APLINKOJE. Technological and Economic Development of Economy, 17(2), 335-351. doi:10.3846/20294913.2011.584961Podvezko, V. (2009). Application of AHP technique. Journal of Business Economics and Management, 10(2), 181-189. doi:10.3846/1611-1699.2009.10.181-189Reformat, M., & Yager, R. R. (2007). Building ensemble classifiers using belief functions and OWA operators. Soft Computing, 12(6), 543-558. doi:10.1007/s00500-007-0227-2Srivastava, R. P., & Mock, T. J. (Eds.). (2002). Belief Functions in Business Decisions. Studies in Fuzziness and Soft Computing. doi:10.1007/978-3-7908-1798-0Torra, V. (1997). The weighted OWA operator. International Journal of Intelligent Systems, 12(2), 153-166. doi:10.1002/(sici)1098-111x(199702)12:23.0.co;2-pWei, G.-W. (2011). Some generalized aggregating operators with linguistic information and their application to multiple attribute group decision making. Computers & Industrial Engineering, 61(1), 32-38. doi:10.1016/j.cie.2011.02.007Wei, G., Zhao, X., & Lin, R. (2010). Some Induced Aggregating Operators with Fuzzy Number Intuitionistic Fuzzy Information and their Applications to Group Decision Making. International Journal of Computational Intelligence Systems, 3(1), 84-95. doi:10.1080/18756891.2010.9727679Xu, Z. (2005). An overview of methods for determining OWA weights. International Journal of Intelligent Systems, 20(8), 843-865. doi:10.1002/int.20097Xu, Z. (2009). A Deviation-Based Approach to Intuitionistic Fuzzy Multiple Attribute Group Decision Making. Group Decision and Negotiation, 19(1), 57-76. doi:10.1007/s10726-009-9164-zXu, Z. S., & Da, Q. L. (2003). An overview of operators for aggregating information. International Journal of Intelligent Systems, 18(9), 953-969. doi:10.1002/int.10127Yager, R. R. (1988). On ordered weighted averaging aggregation operators in multicriteria decisionmaking. IEEE Transactions on Systems, Man, and Cybernetics, 18(1), 183-190. doi:10.1109/21.87068YAGER, R. R. (1992). DECISION MAKING UNDER DEMPSTER-SHAFER UNCERTAINTIES. International Journal of General Systems, 20(3), 233-245. doi:10.1080/03081079208945033Yager, R. R. (1993). Families of OWA operators. Fuzzy Sets and Systems, 59(2), 125-148. doi:10.1016/0165-0114(93)90194-mYager, R. R. (1998). Including importances in OWA aggregations using fuzzy systems modeling. IEEE Transactions on Fuzzy Systems, 6(2), 286-294. doi:10.1109/91.669028Yager, R. R. (2004). Generalized OWA Aggregation Operators. Fuzzy Optimization and Decision Making, 3(1), 93-107. doi:10.1023/b:fodm.0000013074.68765.97Yager, R. R., Engemann, K. J., & Filev, D. P. (1995). On the concept of immediate probabilities. International Journal of Intelligent Systems, 10(4), 373-397. doi:10.1002/int.4550100403Yager, R. R., & Kacprzyk, J. (Eds.). (1997). The Ordered Weighted Averaging Operators. doi:10.1007/978-1-4615-6123-1Yager, R. R., Kacprzyk, J., & Beliakov, G. (Eds.). (2011). Recent Developments in the Ordered Weighted Averaging Operators: Theory and Practice. Studies in Fuzziness and Soft Computing. doi:10.1007/978-3-642-17910-5Yager, R. R., & Liu, L. (Eds.). (2008). Classic Works of the Dempster-Shafer Theory of Belief Functions. Studies in Fuzziness and Soft Computing. doi:10.1007/978-3-540-44792-4Zavadskas, E. K., & Turskis, Z. (2011). MULTIPLE CRITERIA DECISION MAKING (MCDM) METHODS IN ECONOMICS: AN OVERVIEW / DAUGIATIKSLIAI SPRENDIMŲ PRIĖMIMO METODAI EKONOMIKOJE: APŽVALGA. Technological and Economic Development of Economy, 17(2), 397-427. doi:10.3846/20294913.2011.593291Zavadskas, E. K., Vilutienė, T., Turskis, Z., & Tamosaitienė, J. (2010). CONTRACTOR SELECTION FOR CONSTRUCTION WORKS BY APPLYING SAW‐G AND TOPSIS GREY TECHNIQUES. Journal of Business Economics and Management, 11(1), 34-55. doi:10.3846/jbem.2010.03Zeng, S., & Su, W. (2011). Intuitionistic fuzzy ordered weighted distance operator. Knowledge-Based Systems, 24(8), 1224-1232. doi:10.1016/j.knosys.2011.05.013Zhang, X., & Liu, P. (2010). METHOD FOR AGGREGATING TRIANGULAR FUZZY INTUITIONISTIC FUZZY INFORMATION AND ITS APPLICATION TO DECISION MAKING / NUMANOMŲ NEAPIBRĖŽTŲJŲ AIBIŲ TEORIJA IR JOS TAIKYMAS PRIIMANT SPRENDIMUS. Technological and Economic Development of Economy, 16(2), 280-290. doi:10.3846/tede.2010.18Zhao, H., Xu, Z., Ni, M., & Liu, S. (2010). Generalized aggregation operators for intuitionistic fuzzy sets. International Journal of Intelligent Systems, 25(1), 1-30. doi:10.1002/int.20386Zhou, L.-G., & Chen, H. (2010). Generalized ordered weighted logarithm aggregation operators and their applications to group decision making. International Journal of Intelligent Systems, n/a-n/a. doi:10.1002/int.20419Zhou, L.-G., & Chen, H.-Y. (2011). Continuous generalized OWA operator and its application to decision making. Fuzzy Sets and Systems, 168(1), 18-34. doi:10.1016/j.fss.2010.05.009Zhou, L., & Chen, H. (2012). A generalization of the power aggregation operators for linguistic environment and its application in group decision making. Knowledge-Based Systems, 26, 216-224. doi:10.1016/j.knosys.2011.08.004Zhou, L., Chen, H., & Liu, J. (2011). Generalized Multiple Averaging Operators and their Applications to Group Decision Making. Group Decision and Negotiation, 22(2), 331-358. doi:10.1007/s10726-011-9267-1Zhou, L., Chen, H., & Liu, J. (2012). Generalized power aggregation operators and their applications in group decision making. Computers & Industrial Engineering, 62(4), 989-999. doi:10.1016/j.cie.2011.12.025Zhou, L.-G., Chen, H.-Y., Merigó, J. M., & Gil-Lafuente, A. M. (2012). Uncertain generalized aggregation operators. Expert Systems with Applications, 39(1), 1105-1117. doi:10.1016/j.eswa.2011.07.11

    Flow shop rescheduling under different types of disruption

    Full text link
    This is an Accepted Manuscript of an article published by Taylor & Francis in International Journal of Production Research on 2013, available online:http://www.tandfonline.com/10.1080/00207543.2012.666856Almost all manufacturing facilities need to use production planning and scheduling systems to increase productivity and to reduce production costs. Real-life production operations are subject to a large number of unexpected disruptions that may invalidate the original schedules. In these cases, rescheduling is essential to minimise the impact on the performance of the system. In this work we consider flow shop layouts that have seldom been studied in the rescheduling literature. We generate and employ three types of disruption that interrupt the original schedules simultaneously. We develop rescheduling algorithms to finally accomplish the twofold objective of establishing a standard framework on the one hand, and proposing rescheduling methods that seek a good trade-off between schedule quality and stability on the other.The authors would like to thank the anonymous referees for their careful and detailed comments that helped to improve the paper considerably. This work is partially financed by the Small and Medium Industry of the Generalitat Valenciana (IMPIVA) and by the European Union through the European Regional Development Fund (FEDER) inside the R + D program "Ayudas dirigidas a Institutos tecnologicos de la Red IMPIVA" during the year 2011, with project number IMDEEA/2011/142.Katragjini Prifti, K.; Vallada Regalado, E.; Ruiz García, R. (2013). Flow shop rescheduling under different types of disruption. International Journal of Production Research. 51(3):780-797. https://doi.org/10.1080/00207543.2012.666856S780797513Abumaizar, R. J., & Svestka, J. A. (1997). Rescheduling job shops under random disruptions. International Journal of Production Research, 35(7), 2065-2082. doi:10.1080/002075497195074Adiri, I., Frostig, E., & Kan, A. H. G. R. (1991). Scheduling on a single machine with a single breakdown to minimize stochastically the number of tardy jobs. Naval Research Logistics, 38(2), 261-271. doi:10.1002/1520-6750(199104)38:23.0.co;2-iAkturk, M. S., & Gorgulu, E. (1999). Match-up scheduling under a machine breakdown. European Journal of Operational Research, 112(1), 81-97. doi:10.1016/s0377-2217(97)00396-2Allahverdi, A. (1996). Two-machine proportionate flowshop scheduling with breakdowns to minimize maximum lateness. Computers & Operations Research, 23(10), 909-916. doi:10.1016/0305-0548(96)00012-3Arnaout, J. P., & Rabadi, G. (2008). Rescheduling of unrelated parallel machines under machine breakdowns. International Journal of Applied Management Science, 1(1), 75. doi:10.1504/ijams.2008.020040Artigues, C., Billaut, J.-C., & Esswein, C. (2005). Maximization of solution flexibility for robust shop scheduling. European Journal of Operational Research, 165(2), 314-328. doi:10.1016/j.ejor.2004.04.004Azizoglu, M., & Alagöz, O. (2005). Parallel-machine rescheduling with machine disruptions. IIE Transactions, 37(12), 1113-1118. doi:10.1080/07408170500288133Bean, J. C., Birge, J. R., Mittenthal, J., & Noon, C. E. (1991). Matchup Scheduling with Multiple Resources, Release Dates and Disruptions. Operations Research, 39(3), 470-483. doi:10.1287/opre.39.3.470Caricato, P., & Grieco, A. (2008). An online approach to dynamic rescheduling for production planning applications. International Journal of Production Research, 46(16), 4597-4617. doi:10.1080/00207540601136225CHURCH, L. K., & UZSOY, R. (1992). Analysis of periodic and event-driven rescheduling policies in dynamic shops. International Journal of Computer Integrated Manufacturing, 5(3), 153-163. doi:10.1080/09511929208944524Cowling, P., & Johansson, M. (2002). Using real time information for effective dynamic scheduling. European Journal of Operational Research, 139(2), 230-244. doi:10.1016/s0377-2217(01)00355-1Curry, J., & Peters *, B. (2005). Rescheduling parallel machines with stepwise increasing tardiness and machine assignment stability objectives. International Journal of Production Research, 43(15), 3231-3246. doi:10.1080/00207540500103953DUTTA, A. (1990). Reacting to Scheduling Exceptions in FMS Environments. IIE Transactions, 22(4), 300-314. doi:10.1080/07408179008964185Ghezail, F., Pierreval, H., & Hajri-Gabouj, S. (2010). Analysis of robustness in proactive scheduling: A graphical approach. Computers & Industrial Engineering, 58(2), 193-198. doi:10.1016/j.cie.2009.03.004Goren, S., & Sabuncuoglu, I. (2008). Robustness and stability measures for scheduling: single-machine environment. IIE Transactions, 40(1), 66-83. doi:10.1080/07408170701283198Hall, N. G., & Potts, C. N. (2004). Rescheduling for New Orders. Operations Research, 52(3), 440-453. doi:10.1287/opre.1030.0101Herrmann, J. W., Lee, C.-Y., & Snowdon, J. L. (1993). A Classification of Static Scheduling Problems. Complexity in Numerical Optimization, 203-253. doi:10.1142/9789814354363_0011Herroelen, W., & Leus, R. (2005). Project scheduling under uncertainty: Survey and research potentials. European Journal of Operational Research, 165(2), 289-306. doi:10.1016/j.ejor.2004.04.002Hozak, K., & Hill, J. A. (2009). Issues and opportunities regarding replanning and rescheduling frequencies. International Journal of Production Research, 47(18), 4955-4970. doi:10.1080/00207540802047106Huaccho Huatuco, L., Efstathiou, J., Calinescu, A., Sivadasan, S., & Kariuki, S. (2009). Comparing the impact of different rescheduling strategies on the entropic-related complexity of manufacturing systems. International Journal of Production Research, 47(15), 4305-4325. doi:10.1080/00207540701871036Jensen, M. T. (2003). Generating robust and flexible job shop schedules using genetic algorithms. IEEE Transactions on Evolutionary Computation, 7(3), 275-288. doi:10.1109/tevc.2003.810067King, J. R. (1976). The theory-practice gap in job-shop scheduling. Production Engineer, 55(3), 137. doi:10.1049/tpe.1976.0044Kopanos, G. M., Capón-García, E., Espuña,, A., & Puigjaner, L. (2008). Costs for Rescheduling Actions: A Critical Issue for Reducing the Gap between Scheduling Theory and Practice. Industrial & Engineering Chemistry Research, 47(22), 8785-8795. doi:10.1021/ie8005676Lee, C.-Y., Leung, J. Y.-T., & Yu, G. (2006). Two Machine Scheduling under Disruptions with Transportation Considerations. Journal of Scheduling, 9(1), 35-48. doi:10.1007/s10951-006-5592-7Li, Z., & Ierapetritou, M. (2008). Process scheduling under uncertainty: Review and challenges. Computers & Chemical Engineering, 32(4-5), 715-727. doi:10.1016/j.compchemeng.2007.03.001Liao, C. J., & Chen, W. J. (2004). Scheduling under machine breakdown in a continuous process industry. Computers & Operations Research, 31(3), 415-428. doi:10.1016/s0305-0548(02)00224-1Mehta, S. V. (1999). Predictable scheduling of a single machine subject to breakdowns. International Journal of Computer Integrated Manufacturing, 12(1), 15-38. doi:10.1080/095119299130443MUHLEMANN, A. P., LOCKETT, A. G., & FARN, C.-K. (1982). Job shop scheduling heuristics and frequency of scheduling. International Journal of Production Research, 20(2), 227-241. doi:10.1080/00207548208947763Nawaz, M., Enscore, E. E., & Ham, I. (1983). A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. Omega, 11(1), 91-95. doi:10.1016/0305-0483(83)90088-9O’Donovan, R., Uzsoy, R., & McKay, K. N. (1999). Predictable scheduling of a single machine with breakdowns and sensitive jobs. International Journal of Production Research, 37(18), 4217-4233. doi:10.1080/002075499189745Özlen, M., & Azizoğlu, M. (2009). Generating all efficient solutions of a rescheduling problem on unrelated parallel machines. International Journal of Production Research, 47(19), 5245-5270. doi:10.1080/00207540802043998Pfeiffer, A., Kádár, B., & Monostori, L. (2007). Stability-oriented evaluation of rescheduling strategies, by using simulation. Computers in Industry, 58(7), 630-643. doi:10.1016/j.compind.2007.05.009Pierreval, H., & Durieux-Paris, S. (2007). Robust simulation with a base environmental scenario. European Journal of Operational Research, 182(2), 783-793. doi:10.1016/j.ejor.2006.07.045Damodaran, P., Hirani, N. S., & Gallego, M. C. V. (2009). Scheduling identical parallel batch processing machines to minimise makespan using genetic algorithms. European J. of Industrial Engineering, 3(2), 187. doi:10.1504/ejie.2009.023605Qi, X., Bard, J. F., & Yu, G. (2006). Disruption management for machine scheduling: The case of SPT schedules. International Journal of Production Economics, 103(1), 166-184. doi:10.1016/j.ijpe.2005.05.021Rangsaritratsamee, R., Ferrell, W. G., & Kurz, M. B. (2004). Dynamic rescheduling that simultaneously considers efficiency and stability. Computers & Industrial Engineering, 46(1), 1-15. doi:10.1016/j.cie.2003.09.007Ruiz, R., & Stützle, T. (2007). A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem. European Journal of Operational Research, 177(3), 2033-2049. doi:10.1016/j.ejor.2005.12.009Sabuncuoglu, I., & Goren, S. (2009). Hedging production schedules against uncertainty in manufacturing environment with a review of robustness and stability research. International Journal of Computer Integrated Manufacturing, 22(2), 138-157. doi:10.1080/09511920802209033Sabuncuoglu, I., & Kizilisik, O. B. (2003). Reactive scheduling in a dynamic and stochastic FMS environment. International Journal of Production Research, 41(17), 4211-4231. doi:10.1080/0020754031000149202Salveson, M. E. (1952). On a Quantitative Method in Production Planning and Scheduling. Econometrica, 20(4), 554. doi:10.2307/1907643Samarghandi, H., & ElMekkawy, T. Y. (2011). An efficient hybrid algorithm for the two-machine no-wait flow shop problem with separable setup times and single server. European J. of Industrial Engineering, 5(2), 111. doi:10.1504/ejie.2011.039869Subramaniam *, V., Raheja, A. S., & Rama Bhupal Reddy, K. (2005). Reactive repair tool for job shop schedules. International Journal of Production Research, 43(1), 1-23. doi:10.1080/0020754042000270412Taillard, E. (1990). Some efficient heuristic methods for the flow shop sequencing problem. European Journal of Operational Research, 47(1), 65-74. doi:10.1016/0377-2217(90)90090-xTaillard, E. (1993). Benchmarks for basic scheduling problems. European Journal of Operational Research, 64(2), 278-285. doi:10.1016/0377-2217(93)90182-mValente, J. M. S., & Schaller, J. E. (2010). Improved heuristics for the single machine scheduling problem with linear early and quadratic tardy penalties. European J. of Industrial Engineering, 4(1), 99. doi:10.1504/ejie.2010.029572Vallada, E., & Ruiz, R. (2010). Genetic algorithms with path relinking for the minimum tardiness permutation flowshop problem☆. Omega, 38(1-2), 57-67. doi:10.1016/j.omega.2009.04.002Vieira, G. E., Herrmann, J. W., & Lin, E. (2000). Predicting the performance of rescheduling strategies for parallel machine systems. Journal of Manufacturing Systems, 19(4), 256-266. doi:10.1016/s0278-6125(01)80005-4Vieira, G. E., Herrmann, J. W., & Lin, E. (2003). Journal of Scheduling, 6(1), 39-62. doi:10.1023/a:1022235519958Yang, J., & Yu, G. (2002). Journal of Combinatorial Optimization, 6(1), 17-33. doi:10.1023/a:1013333232691Zandieh, M., & Gholami, M. (2009). An immune algorithm for scheduling a hybrid flow shop with sequence-dependent setup times and machines with random breakdowns. International Journal of Production Research, 47(24), 6999-7027. doi:10.1080/0020754080240063

    Supporting learning with 3D interactive applications in early years

    Full text link
    Early years education is an key element for the introduction of children in the education system. In order to improve this process, the aim of this study was to explore how guided interaction with 3D apps can fit into a preschool setting, how it can help children learn through playing and how it can improve their learning outcomes. A study was conducted with six classes of 87 students aged between 3 years to 6 years, over a 12-week period. Children used 10 inch Android tablets with a series of apps developed by our research team, about houses of the world, the skeleton & five senses and, animals. A quasi-experimental design based on a nonequivalent groups pretest and posttest de-sign revealed that an active behavior and better learning outcomes are obtained by children participating in the experimental groupCascales Martínez, A.; Martínez Segura, MJ.; Laguna- Segobia, M.; Pérez Lopez, DC.; Contero, M. (2014). Supporting learning with 3D interactive applications in early years. Lecture Notes in Computer Science. 8524:11-22. doi:10.1007/978-3-319-07485-6_2S11228524Plowman, L., Stephen, C.: Children, Play and Computers in Preschool Education. British Journal of Educational Technology 36(2), 145–157 (2005)Tootell, H., Plumb, M., Hadfield, C., Dawson, L.: Gestural Interface Technology in early childhood education: A framework for fully-engaged communication. In: Proceedings of the Annual Hawaii International Conference on System Sciences, art. no. 6479836, pp. 13–20 (2013)Marco, J., Cerezo, E.: Bringing Tabletop Technologies to Kindergarten Children. In: HCI 2009 International Conference on Human-Computer Interaction–Celebrating People and Technology, pp. 103–111. Springer, Heidelberg (2009)Heft, T.M., Swaminathan, S.: Using Computers in Early Childhood Classrooms: Teachers’ Attitudes, Skills and Practices. Journal of Early Childhood Research 6(4), 169–188 (2006)Wang, X.C., Ching, C.C.: Social Construction of Computer Experience in a First-Grade Classroom: Social Processes and Mediating Artifacts. Early Education and Development 14(3), 335–361 (2003)Couse, L.J., Chen, D.W.: A Tablet Computer for Young Children? Exploring Its Viability for Early Childhood Education. Journal of Research on Technology in Education 43(1), 75–98 (2012)Kearney, J.: Educating Young Children - Learning and Teaching in the Early Childhood Years. Early Childhood Teachers’ Association (ECTA Inc.) 3(18) (2012)Rankothge, W.H., Sendanayake, S.V., Sudarshana, R.G.P., Balasooriya, B.G.G.H., Alahapperuma, D.R., Mallawarachchi, Y.: Technology Assisted Tool for Learning Skills Development in Early Childhood. In: Proc. of 2012 International Conference on Advances in ICT for Emerging Regions (ICTer), pp. 165–168 (2012)Sandvik, M., Smørdal, O., Østerud, S.: Exploring iPads in Practitioners’ Repertoires for Language Learning and Literacy Practices In Kindergarten. Nordic Journal of Digital Literacy 3(7), 204–221 (2012)Priyankara, K.W.T.G.T., Mahawaththa, D.C., Nawinna, D.P., Jayasundara, J.M.A., Tharuka, K.D.N., Rajapaksha, S.K.: Android Based e-Learning Solution for Early Childhood Education in Sri Lanka. In: Proceedings of the 8th International Conference on Computer Science & Education (ICCSE), pp. 715–718 (2013)Zanchi, C., Presser, A.L., Vahey, P.: Next Generation Preschool Math Demo: Tablet Games for Preschool Classrooms. In: Proceedings of the 12th International Conference on Interaction Design and Children, IDC 2013, pp. 527–530 (2013)Meyer, B.: Game-based Language Learning for Pre-School Children: A Design Perspective. Electronic Journal of e-Learning 11(1), 39–48 (2013)Straub, D.W.: Validating Instruments in MIS Research. MIS Quarterly 13(2), 147–169 (1989)Cook, T.D., Campbell, D.T., Day, A.: Quasi-experimentation: Design and Analysis Issues for Field Settings, pp. 19–21. Houghton Mifflin, Boston (1979)Buendía, L., Y Berrocal, E.: La Ética de la Investigación Educativa. Ágora Digital 1 (2011)Tojar, J., Serrano, J.: Ética e Investigación Educativa. RELIEVE 6(2) (2000)Cascales, A., Laguna, I., Pérez-López, D., Perona, P., Contero, M.: 3D Interactive Applications on Tablets for Preschoolers: Exploring the Human Skeleton and the Senses. In: Hernández-Leo, D., Ley, T., Klamma, R., Harrer, A. (eds.) EC-TEL 2013. LNCS, vol. 8095, pp. 71–83. Springer, Heidelberg (2013

    A Visual Dashboard to Track Learning Analytics for Educational Cloud Computing

    Full text link
    [EN] Cloud providers such as Amazon Web Services (AWS) stand out as useful platforms to teach distributed computing concepts as well as the development of Cloud-native scalable application architectures on real-world infrastructures. Instructors can benefit from high-level tools to track the progress of students during their learning paths on the Cloud, and this information can be disclosed via educational dashboards for students to understand their progress through the practical activities. To this aim, this paper introduces CloudTrail-Tracker, an open-source platform to obtain enhanced usage analytics from a shared AWS account. The tool provides the instructor with a visual dashboard that depicts the aggregated usage of resources by all the students during a certain time frame and the specific use of AWS for a specific student. To facilitate self-regulation of students, the dashboard also depicts the percentage of progress for each lab session and the pending actions by the student. The dashboard has been integrated in four Cloud subjects that use different learning methodologies (from face-to-face to online learning) and the students positively highlight the usefulness of the tool for Cloud instruction in AWS. This automated procurement of evidences of student activity on the Cloud results in close to real-time learning analytics useful both for semi-automated assessment and student self-awareness of their own training progress.This research was funded by the Spanish Ministerio de Economia, Industria y Competitividad, grant number TIN2016-79951-R (BigCLOE) and by the Vicerrectorado de Estudios, Calidad y Acreditacion of the Universitat Politecnica de Valencia (UPV) to develop the PIME B29.Naranjo, DM.; Prieto, JR.; Moltó, G.; Calatrava Arroyo, A. (2019). A Visual Dashboard to Track Learning Analytics for Educational Cloud Computing. Sensors. 19(13):1-15. https://doi.org/10.3390/s19132952S1151913Porter, W. W., Graham, C. R., Spring, K. A., & Welch, K. R. (2014). Blended learning in higher education: Institutional adoption and implementation. Computers & Education, 75, 185-195. doi:10.1016/j.compedu.2014.02.011Thai, N. T. T., De Wever, B., & Valcke, M. (2017). The impact of a flipped classroom design on learning performance in higher education: Looking for the best «blend» of lectures and guiding questions with feedback. Computers & Education, 107, 113-126. doi:10.1016/j.compedu.2017.01.003Chen, Y., Wang, Y., Kinshuk, & Chen, N.-S. (2014). Is FLIP enough? Or should we use the FLIPPED model instead? Computers & Education, 79, 16-27. doi:10.1016/j.compedu.2014.07.004Baepler, P., Walker, J. D., & Driessen, M. (2014). It’s not about seat time: Blending, flipping, and efficiency in active learning classrooms. Computers & Education, 78, 227-236. doi:10.1016/j.compedu.2014.06.006Molto, G., & Caballer, M. (2014). On using the cloud to support online courses. 2014 IEEE Frontiers in Education Conference (FIE) Proceedings. doi:10.1109/fie.2014.7044041González-Martínez, J. A., Bote-Lorenzo, M. L., Gómez-Sánchez, E., & Cano-Parra, R. (2015). Cloud computing and education: A state-of-the-art survey. Computers & Education, 80, 132-151. doi:10.1016/j.compedu.2014.08.017AWS Cloudtrailhttps://aws.amazon.com/cloudtrail/?nc1=h_lsFerguson, R. (2012). Learning analytics: drivers, developments and challenges. International Journal of Technology Enhanced Learning, 4(5/6), 304. doi:10.1504/ijtel.2012.051816Schwendimann, B. A., Rodriguez-Triana, M. J., Vozniuk, A., Prieto, L. P., Boroujeni, M. S., Holzer, A., … Dillenbourg, P. (2017). Perceiving Learning at a Glance: A Systematic Literature Review of Learning Dashboard Research. IEEE Transactions on Learning Technologies, 10(1), 30-41. doi:10.1109/tlt.2016.2599522Sedrakyan, G., Malmberg, J., Verbert, K., Järvelä, S., & Kirschner, P. A. (2020). Linking learning behavior analytics and learning science concepts: Designing a learning analytics dashboard for feedback to support learning regulation. Computers in Human Behavior, 107, 105512. doi:10.1016/j.chb.2018.05.004Tabaa, Y., & Medouri, A. (2013). LASyM: A Learning Analytics System for MOOCs. International Journal of Advanced Computer Science and Applications, 4(5). doi:10.14569/ijacsa.2013.040516Verbert, K., Govaerts, S., Duval, E., Santos, J. L., Van Assche, F., Parra, G., & Klerkx, J. (2013). Learning dashboards: an overview and future research opportunities. Personal and Ubiquitous Computing. doi:10.1007/s00779-013-0751-2Arnold, K. E., & Pistilli, M. D. (2012). Course signals at Purdue. Proceedings of the 2nd International Conference on Learning Analytics and Knowledge - LAK ’12. doi:10.1145/2330601.2330666Ali, L., Hatala, M., Gašević, D., & Jovanović, J. (2012). A qualitative evaluation of evolution of a learning analytics tool. Computers & Education, 58(1), 470-489. doi:10.1016/j.compedu.2011.08.030Leony, D., Pardo, A., de la Fuente Valentín, L., de Castro, D. S., & Kloos, C. D. (2012). GLASS. Proceedings of the 2nd International Conference on Learning Analytics and Knowledge - LAK ’12. doi:10.1145/2330601.2330642Vieira, C., Parsons, P., & Byrd, V. (2018). Visual learning analytics of educational data: A systematic literature review and research agenda. Computers & Education, 122, 119-135. doi:10.1016/j.compedu.2018.03.018Jivet, I., Scheffel, M., Specht, M., & Drachsler, H. (2018). License to evaluate. Proceedings of the 8th International Conference on Learning Analytics and Knowledge. doi:10.1145/3170358.3170421Amazon CloudWatchhttps://aws.amazon.com/cloudwatch/?nc1=h_lsSpectrumhttps://spectrumapp.io/Opsview Monitorhttps://www.opsview.com/SignalFxhttps://signalfx.com/AWS Cloud Monitoringhttps://www.solarwinds.com/topics/aws-monitoringLonn, S., Aguilar, S. J., & Teasley, S. D. (2015). Investigating student motivation in the context of a learning analytics intervention during a summer bridge program. Computers in Human Behavior, 47, 90-97. doi:10.1016/j.chb.2014.07.013Pintrich, P. R. (2004). A Conceptual Framework for Assessing Motivation and Self-Regulated Learning in College Students. Educational Psychology Review, 16(4), 385-407. doi:10.1007/s10648-004-0006-xButler, D. L., & Winne, P. H. (1995). Feedback and Self-Regulated Learning: A Theoretical Synthesis. Review of Educational Research, 65(3), 245-281. doi:10.3102/00346543065003245Knight, S., Buckingham Shum, S., & Littleton, K. (2014). Epistemology, Assessment, Pedagogy: Where Learning Meets Analytics in the Middle Space. Journal of Learning Analytics, 1(2). doi:10.18608/jla.2014.12.3Jivet, I., Scheffel, M., Drachsler, H., & Specht, M. (2017). Awareness Is Not Enough: Pitfalls of Learning Analytics Dashboards in the Educational Practice. Lecture Notes in Computer Science, 82-96. doi:10.1007/978-3-319-66610-5_

    Reproducibility strategies for parallel preconditioned Conjugate Gradient

    Get PDF
    [EN] The Preconditioned Conjugate Gradient method is often used in numerical simulations. While being widely used, the solver is also known for its lack of accuracy while computing the residual. In this article, we aim at a twofold goal: enhance the accuracy of the solver but also ensure its reproducibility in a message-passing implementation. We design and employ various strategies starting from the ExBLAS approach (through preserving every bit of information until final rounding) to its more lightweight performance-oriented variant (through expanding the intermediate precision). These algorithmic strategies are reinforced with programmability suggestions to assure deterministic executions. Finally, we verify these strategies on modern HPC systems: both versions deliver reproducible number of iterations, residuals, direct errors, and vector-solutions for the overhead of only 29% (ExBLAS) and 4% (lightweight) on 768 processes.To begin with, we would like to thank the reviewers for their thorough reading of the article as well as their valuable comments and suggestions. This research was partially supported by the European Union's Horizon 2020 research, innovation programme under the Marie Sklodowska-Curie grant agreement via the Robust project No. 842528 as well as the Project HPC-EUROPA3 (INFRAIA-2016-1-730897), with the support of the H2020 EC RIA Programme; in particular, the author gratefully acknowledges the support of Vicenc Beltran and the computer resources and technical support provided by BSC. The researchers from Universitat Jaume I (UJI) and Universidad Politecnica de Valencia (UPV) were supported by MINECO, Spain project TIN2017-82972-R. Maria Barreda was also supported by the POSDOC-A/2017/11 project from the Universitat Jaume I, Spain.Iakymchuk, R.; Barreda, M.; Wiesenberger, M.; Aliaga, JI.; Quintana Ortí, ES. (2020). Reproducibility strategies for parallel preconditioned Conjugate Gradient. Journal of Computational and Applied Mathematics. 371:1-13. https://doi.org/10.1016/j.cam.2019.112697S113371Lawson, C. L., Hanson, R. J., Kincaid, D. R., & Krogh, F. T. (1979). Basic Linear Algebra Subprograms for Fortran Usage. ACM Transactions on Mathematical Software, 5(3), 308-323. doi:10.1145/355841.355847Dongarra, J. J., Du Croz, J., Hammarling, S., & Duff, I. S. (1990). A set of level 3 basic linear algebra subprograms. ACM Transactions on Mathematical Software, 16(1), 1-17. doi:10.1145/77626.79170Demmel, J., & Nguyen, H. D. (2015). Parallel Reproducible Summation. IEEE Transactions on Computers, 64(7), 2060-2070. doi:10.1109/tc.2014.2345391Iakymchuk, R., Graillat, S., Defour, D., & Quintana-Ortí, E. S. (2019). Hierarchical approach for deriving a reproducible unblocked LU factorization. The International Journal of High Performance Computing Applications, 33(5), 791-803. doi:10.1177/1094342019832968Iakymchuk, R., Defour, D., Collange, S., & Graillat, S. (2016). Reproducible and Accurate Matrix Multiplication. Lecture Notes in Computer Science, 126-137. doi:10.1007/978-3-319-31769-4_11Rump, S. M., Ogita, T., & Oishi, S. (2009). Accurate Floating-Point Summation Part II: Sign, K-Fold Faithful and Rounding to Nearest. SIAM Journal on Scientific Computing, 31(2), 1269-1302. doi:10.1137/07068816xBurgess, N., Goodyer, C., Hinds, C. N., & Lutz, D. R. (2019). High-Precision Anchored Accumulators for Reproducible Floating-Point Summation. IEEE Transactions on Computers, 68(7), 967-978. doi:10.1109/tc.2018.2855729D. Mukunoki, T. Ogita, K. Ozaki, Accurate and reproducible BLAS routines with Ozaki scheme for many-core architectures, in: Proc. International Conference on Parallel Processing and Applied Mathematics, PPAM2019, 2019, accepted.Ogita, T., Rump, S. M., & Oishi, S. (2005). Accurate Sum and Dot Product. SIAM Journal on Scientific Computing, 26(6), 1955-1988. doi:10.1137/030601818Kulisch, U., & Snyder, V. (2010). The exact dot product as basic tool for long interval arithmetic. Computing, 91(3), 307-313. doi:10.1007/s00607-010-0127-7Boldo, S., & Melquiond, G. (2008). Emulation of a FMA and Correctly Rounded Sums: Proved Algorithms Using Rounding to Odd. IEEE Transactions on Computers, 57(4), 462-471. doi:10.1109/tc.2007.70819Wiesenberger, M., Einkemmer, L., Held, M., Gutierrez-Milla, A., Sáez, X., & Iakymchuk, R. (2019). Reproducibility, accuracy and performance of the Feltor code and library on parallel computer architectures. Computer Physics Communications, 238, 145-156. doi:10.1016/j.cpc.2018.12.006Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., & Zimmermann, P. (2007). MPFR. ACM Transactions on Mathematical Software, 33(2), 13. doi:10.1145/1236463.1236468J. Demmel, H.D. Nguyen, Fast reproducible floating-point summation, in: Proceedings of ARITH-21, 2013, pp. 163–172.Ozaki, K., Ogita, T., Oishi, S., & Rump, S. M. (2011). Error-free transformations of matrix multiplication by using fast routines of matrix multiplication and its applications. Numerical Algorithms, 59(1), 95-118. doi:10.1007/s11075-011-9478-1Carson, E., & Higham, N. J. (2018). Accelerating the Solution of Linear Systems by Iterative Refinement in Three Precisions. SIAM Journal on Scientific Computing, 40(2), A817-A847. doi:10.1137/17m114081

    AI and OR in management of operations: history and trends

    Get PDF
    The last decade has seen a considerable growth in the use of Artificial Intelligence (AI) for operations management with the aim of finding solutions to problems that are increasing in complexity and scale. This paper begins by setting the context for the survey through a historical perspective of OR and AI. An extensive survey of applications of AI techniques for operations management, covering a total of over 1200 papers published from 1995 to 2004 is then presented. The survey utilizes Elsevier's ScienceDirect database as a source. Hence, the survey may not cover all the relevant journals but includes a sufficiently wide range of publications to make it representative of the research in the field. The papers are categorized into four areas of operations management: (a) design, (b) scheduling, (c) process planning and control and (d) quality, maintenance and fault diagnosis. Each of the four areas is categorized in terms of the AI techniques used: genetic algorithms, case-based reasoning, knowledge-based systems, fuzzy logic and hybrid techniques. The trends over the last decade are identified, discussed with respect to expected trends and directions for future work suggested

    Applications using estimates of forest parameters derived from satellite and forest inventory data

    Get PDF
    From the combination of optical satellite data, digital map data, and forest inventory plot data, continuous estimates have been made for several forest parameters (wood volume, age and biomass). Five different project areas within Sweden are presented which have utilized these estimates for a range of applications. The method for estimating the forest parameters was a ”k-Nearest Neighbor” algorithm, which used a weighted mean value of k spectrally similar reference plots. Reference data were obtained from the Swedish National Forest Inventory. The output was continuous estimates at the pixel level for each of the variables estimated. Validation results show that accuracy of the estimates for all parameters was low at the pixel level (e.g., for total wood volume RMSE ranged from 58-80%), with a tendency toward the mean, and an underestimation of higher values while overestimating lower values. However, when the accuracy of the estimates is assessed over larger areas, the errors are lower, with best results being 10% RMSE over a 100 ha aggregation, and 17% RMSE over a 19 ha aggregation. Applications presented in this paper include moose and bird habitat studies, county level planning activities, use as input information to prognostic programs, and computation of statistics on timber volume within drainage basins and smaller land holdings. This paper provides a background on the kNN method and gives examples of how end users are currently applying satellite-produced estimation data such as these

    Agri-food 4.0: A survey of the supply chains and technologies for the future agriculture

    Full text link
    [EN] The term "Agri-Food 4.0" is an analogy to the term Industry 4.0; coming from the concept "agriculture 4.0". Since the origins of the industrial revolution, where the steam engines started the concept of Industry 1.0 and later the use of electricity upgraded the concept to Industry 2.0, the use of technologies generated a milestone in the industry revolution by addressing the Industry 3.0 concept. Hence, Industry 4.0, it is about including and integrating the latest developments based on digital technologies as well as the interoperability process across them. This allows enterprises to transmit real-time information in terms behaviour and performance. Therefore, the challenge is to maintain these complex networked structures efficiently linked and organised within the use of such technologies, especially to identify and satisfy supply chain stakeholders dynamic requirements. In this context, the agriculture domain is not an exception although it possesses some specialities depending from the domain. In fact, all agricultural machinery incorporates electronic controls and has entered to the digital age, enhancing their current performance. In addition, electronics, using sensors and drones, support the data collection of several agriculture key aspects, such as weather, geographical spatialization, animals and crops behaviours, as well as the entire farm life cycle. However, the use of the right methods and methodologies for enhancing agriculture supply chains performance is still a challenge, thus the concept of Industry 4.0 has evolved and adapted to agriculture 4.0 in order analyse the behaviours and performance in this specific domain. Thus, the question mark on how agriculture 4.0 support a better supply chain decision-making process, or how can help to save time to farmer to make effective decision based on objective data, remains open. Therefore, in this survey, a review of more than hundred papers on new technologies and the new available supply chains methods are analysed and contrasted to understand the future paths of the Agri-Food domain.Authors of this publication acknowledge the contribution of the Project 691249, RUC-APS "Enhancing and implementing Knowledge based ICT solutions within high Risk and Uncertain Conditions for Agriculture Production Systems" (www.ruc-aps.eu), funded by the European Union under their funding scheme H2020-MSCARISE-2015.Lezoche, M.; Hernández, JE.; Alemany Díaz, MDM.; Panetto, H.; Kacprzyk, J. (2020). Agri-food 4.0: A survey of the supply chains and technologies for the future agriculture. Computers in Industry. 117:1-15. https://doi.org/10.1016/j.compind.2020.103187S115117Ahumada, O., & Villalobos, J. R. (2009). Application of planning models in the agri-food supply chain: A review. European Journal of Operational Research, 196(1), 1-20. doi:10.1016/j.ejor.2008.02.014Ait-Mouheb, N., Bahri, A., Thayer, B. B., Benyahia, B., Bourrié, G., Cherki, B., … Harmand, J. (2018). The reuse of reclaimed water for irrigation around the Mediterranean Rim: a step towards a more virtuous cycle? Regional Environmental Change, 18(3), 693-705. doi:10.1007/s10113-018-1292-zAli, J., & Kumar, S. (2011). Information and communication technologies (ICTs) and farmers’ decision-making across the agricultural supply chain. International Journal of Information Management, 31(2), 149-159. doi:10.1016/j.ijinfomgt.2010.07.008Alzahrani, S. M. (2018). Development of IoT mining machine for Twitter sentiment analysis: Mining in the cloud and results on the mirror. 2018 15th Learning and Technology Conference (L&T). doi:10.1109/lt.2018.8368490Amandeep, Bhattacharjee, A., Das, P., Basu, D., Roy, S., Ghosh, S., … Rana, T. K. (2017). Smart farming using IOT. 2017 8th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON). doi:10.1109/iemcon.2017.8117219Annosi, M. C., Brunetta, F., Monti, A., & Nati, F. (2019). Is the trend your friend? An analysis of technology 4.0 investment decisions in agricultural SMEs. Computers in Industry, 109, 59-71. doi:10.1016/j.compind.2019.04.003Baio, F. H. R. (2011). Evaluation of an auto-guidance system operating on a sugar cane harvester. Precision Agriculture, 13(1), 141-147. doi:10.1007/s11119-011-9241-6Belaud, J.-P., Prioux, N., Vialle, C., & Sablayrolles, C. (2019). Big data for agri-food 4.0: Application to sustainability management for by-products supply chain. Computers in Industry, 111, 41-50. doi:10.1016/j.compind.2019.06.006Nicolaas Bezuidenhout, C., Bodhanya, S., & Brenchley, L. (2012). An analysis of collaboration in a sugarcane production and processing supply chain. British Food Journal, 114(6), 880-895. doi:10.1108/00070701211234390Bhatt, M. R., & Buch, S. (2015). Prediction of formability for sheet metal component using artificial intelligent technique. 2015 2nd International Conference on Signal Processing and Integrated Networks (SPIN). doi:10.1109/spin.2015.7095356Birkel, H. S., & Hartmann, E. (2019). Impact of IoT challenges and risks for SCM. Supply Chain Management: An International Journal, 24(1), 39-61. doi:10.1108/scm-03-2018-0142Boehlje, M. (1999). Structural Changes in the Agricultural Industries: How Do We Measure, Analyze and Understand Them? American Journal of Agricultural Economics, 81(5), 1028-1041. doi:10.2307/1244080Bonney, L., Clark, R., Collins, R., & Fearne, A. (2007). From serendipity to sustainable competitive advantage: insights from Houston’s Farm and their journey of co‐innovation. Supply Chain Management: An International Journal, 12(6), 395-399. doi:10.1108/13598540710826326Boshkoska, B. M., Liu, S., Zhao, G., Fernandez, A., Gamboa, S., del Pino, M., … Chen, H. (2019). A decision support system for evaluation of the knowledge sharing crossing boundaries in agri-food value chains. Computers in Industry, 110, 64-80. doi:10.1016/j.compind.2019.04.012Brewster, C., Roussaki, I., Kalatzis, N., Doolin, K., & Ellis, K. (2017). IoT in Agriculture: Designing a Europe-Wide Large-Scale Pilot. IEEE Communications Magazine, 55(9), 26-33. doi:10.1109/mcom.2017.1600528Bronson, K., & Knezevic, I. (2016). Big Data in food and agriculture. Big Data & Society, 3(1), 205395171664817. doi:10.1177/2053951716648174Brown, K. (2013). Global environmental change I. Progress in Human Geography, 38(1), 107-117. doi:10.1177/0309132513498837Chilcanan, D., Navas, P., & Escobar, S. M. (2017). Expert system for remote process automation in multiplatform servers, through human machine conversation. 2017 12th Iberian Conference on Information Systems and Technologies (CISTI). doi:10.23919/cisti.2017.7975913Choi, J., In, Y., Park, C., Seok, S., Seo, H., & Kim, H. (2016). Secure IoT framework and 2D architecture for End-To-End security. The Journal of Supercomputing, 74(8), 3521-3535. doi:10.1007/s11227-016-1684-0Cohen, W. M., & Levinthal, D. A. (1990). Absorptive Capacity: A New Perspective on Learning and Innovation. Administrative Science Quarterly, 35(1), 128. doi:10.2307/2393553Dabbene, F., Gay, P., & Tortia, C. (2014). Traceability issues in food supply chain management: A review. Biosystems Engineering, 120, 65-80. doi:10.1016/j.biosystemseng.2013.09.006Del Borghi, A., Gallo, M., Strazza, C., & Del Borghi, M. (2014). An evaluation of environmental sustainability in the food industry through Life Cycle Assessment: the case study of tomato products supply chain. Journal of Cleaner Production, 78, 121-130. doi:10.1016/j.jclepro.2014.04.083Devarakonda, R., Shrestha, B., Palanisamy, G., Hook, L., Killeffer, T., Krassovski, M., … Lazer, K. (2014). OME: Tool for generating and managing metadata to handle BigData. 2014 IEEE International Conference on Big Data (Big Data). doi:10.1109/bigdata.2014.7004476Nascimento, A. F. do, Mendonça, E. de S., Leite, L. F. C., Scholberg, J., & Neves, J. C. L. (2012). Calibration and validation of models for short-term decomposition and N mineralization of plant residues in the tropics. Scientia Agricola, 69(6), 393-401. doi:10.1590/s0103-90162012000600008Dolan, C., & Humphrey, J. (2000). Governance and Trade in Fresh Vegetables: The Impact of UK Supermarkets on the African Horticulture Industry. Journal of Development Studies, 37(2), 147-176. doi:10.1080/713600072Dragincic, J., Korac, N., & Blagojevic, B. (2015). Group multi-criteria decision making (GMCDM) approach for selecting the most suitable table grape variety intended for organic viticulture. Computers and Electronics in Agriculture, 111, 194-202. doi:10.1016/j.compag.2014.12.023Dworak, V., Selbeck, J., Dammer, K.-H., Hoffmann, M., Zarezadeh, A., & Bobda, C. (2013). Strategy for the Development of a Smart NDVI Camera System for Outdoor Plant Detection and Agricultural Embedded Systems. Sensors, 13(2), 1523-1538. doi:10.3390/s130201523Eisele, M., Kiese, R., Krämer, A., & Leibundgut, C. (2001). Application of a catchment water quality model for assessment and prediction of nitrogen budgets. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 26(7-8), 547-551. doi:10.1016/s1464-1909(01)00048-xElsayed, K. M. F., Ismail, T., & S. Ouf, N. (2018). A Review on the Relevant Applications of Machine Learning in Agriculture. IJIREEICE, 6(8), 1-17. doi:10.17148/ijireeice.2018.681Esteso, A., Alemany, M. M. E., & Ortiz, A. (2017). Métodos y Modelos Deterministas e Inciertos para la Gestión de Cadenas de Suministro Agroalimentarias. Dirección y Organización, 41-46. doi:10.37610/dyo.v0i0.509Esteso, A., Alemany, M. M. E., & Ortiz, A. (2018). Conceptual framework for designing agri-food supply chains under uncertainty by mathematical programming models. International Journal of Production Research, 56(13), 4418-4446. doi:10.1080/00207543.2018.1447706GERHARDS, R., GUTJAHR, C., WEIS, M., KELLER, M., SÖKEFELD, M., MÖHRING, J., & PIEPHO, H. P. (2011). Using precision farming technology to quantify yield effects attributed to weed competition and herbicide application. Weed Research, 52(1), 6-15. doi:10.1111/j.1365-3180.2011.00893.xGovindan, K., Jafarian, A., Khodaverdi, R., & Devika, K. (2014). Two-echelon multiple-vehicle location–routing problem with time windows for optimization of sustainable supply chain network of perishable food. International Journal of Production Economics, 152, 9-28. doi:10.1016/j.ijpe.2013.12.028Gumaste, S. S., & Kadam, A. J. (2016). Future weather prediction using genetic algorithm and FFT for smart farming. 2016 International Conference on Computing Communication Control and automation (ICCUBEA). doi:10.1109/iccubea.2016.7860028Hashem, H., & Ranc, D. (2016). A review of modeling toolbox for BigData. 2016 International Conference on Military Communications and Information Systems (ICMCIS). doi:10.1109/icmcis.2016.7496565Hefnawy, A., Elhariri, T., Cherifi, C., Robert, J., Bouras, A., Kubler, S., & Framling, K. (2017). Combined use of lifecycle management and IoT in smart cities. 2017 11th International Conference on Software, Knowledge, Information Management and Applications (SKIMA). doi:10.1109/skima.2017.8294112Hosseini, S. H., Tang, C. Y., & Jiang, J. N. (2014). Calibration of a Wind Farm Wind Speed Model With Incomplete Wind Data. IEEE Transactions on Sustainable Energy, 5(1), 343-350. doi:10.1109/tste.2013.2284490Hu, Y., Zhang, L., Li, J., & Mehrotra, S. (2016). ICME 2016 Image Recognition Grand Challenge. 2016 IEEE International Conference on Multimedia & Expo Workshops (ICMEW). doi:10.1109/icmew.2016.7574663A. Irmak, J. W. Jones, W. D. Batchelor, S. Irmak, K. J. Boote, & J. O. Paz. (2006). Artificial Neural Network Model as a Data Analysis Tool in Precision Farming. Transactions of the ASABE, 49(6), 2027-2037. doi:10.13031/2013.22264Jeon, S., Kim, B., & Huh, J. (2017). Study on methods to determine rotor equivalent wind speed to increase prediction accuracy of wind turbine performance under wake condition. Energy for Sustainable Development, 40, 41-49. doi:10.1016/j.esd.2017.06.001Joly, P.-B. (2005). Resilient farming systems in a complex world — new issues for the governance of science and innovation. Australian Journal of Experimental Agriculture, 45(6), 617. doi:10.1071/ea03252Joshi, R., Banwet, D. K., & Shankar, R. (2009). Indian cold chain: modeling the inhibitors. British Food Journal, 111(11), 1260-1283. doi:10.1108/00070700911001077Kamata, T., Roshanianfard, A., & Noguchi, N. (2018). Heavy-weight Crop Harvesting Robot - Controlling Algorithm. IFAC-PapersOnLine, 51(17), 244-249. doi:10.1016/j.ifacol.2018.08.165Kamble, S. S., Gunasekaran, A., & Gawankar, S. A. (2020). Achieving sustainable performance in a data-driven agriculture supply chain: A review for research and applications. International Journal of Production Economics, 219, 179-194. doi:10.1016/j.ijpe.2019.05.022Kamilaris, A., Kartakoullis, A., & Prenafeta-Boldú, F. X. (2017). A review on the practice of big data analysis in agriculture. Computers and Electronics in Agriculture, 143, 23-37. doi:10.1016/j.compag.2017.09.037Kelepouris, T., Pramatari, K., & Doukidis, G. (2007). RFID‐enabled traceability in the food supply chain. Industrial Management & Data Systems, 107(2), 183-200. doi:10.1108/02635570710723804Khan, S. F., & Ismail, M. Y. (2018). An Investigation into the Challenges and Opportunities Associated with the Application of Internet of Things (IoT) in the Agricultural Sector-A Review. Journal of Computer Science, 14(2), 132-143. doi:10.3844/jcssp.2018.132.143Kladivko, E. J., Helmers, M. J., Abendroth, L. J., Herzmann, D., Lal, R., Castellano, M. J., … Villamil, M. B. (2014). Standardized research protocols enable transdisciplinary research of climate variation impacts in corn production systems. Journal of Soil and Water Conservation, 69(6), 532-542. doi:10.2489/jswc.69.6.532Ko, T., Lee, J., & Ryu, D. (2018). Blockchain Technology and Manufacturing Industry: Real-Time Transparency and Cost Savings. Sustainability, 10(11), 4274. doi:10.3390/su10114274KÖK, M. S. (2009). Application of Food Safety Management Systems (ISO 22000/HACCP) in the Turkish Poultry Industry: A Comparison Based on Enterprise Size. Journal of Food Protection, 72(10), 2221-2225. doi:10.4315/0362-028x-72.10.2221Kvíz, Z., Kroulik, M., & Chyba, J. (2014). Machinery guidance systems analysis concerning pass-to-pass accuracy as a tool for efficient plant production in fields and for soil damage reduction. Plant, Soil and Environment, 60(No. 1), 36-42. doi:10.17221/622/2012-pseLamsal, K., Jones, P. C., & Thomas, B. W. (2016). Harvest logistics in agricultural systems with multiple, independent producers and no on-farm storage. Computers & Industrial Engineering, 91, 129-138. doi:10.1016/j.cie.2015.10.018Laube, P., Duckham, M., & Palaniswami, M. (2011). Deferred decentralized movement pattern mining for geosensor networks. International Journal of Geographical Information Science, 25(2), 273-292. doi:10.1080/13658810903296630Li, F.-R., Gao, C.-Y., Zhao, H.-L., & Li, X.-Y. (2002). Soil conservation effectiveness and energy efficiency of alternative rotations and continuous wheat cropping in the Loess Plateau of northwest China. Agriculture, Ecosystems & Environment, 91(1-3), 101-111. doi:10.1016/s0167-8809(01)00265-1Liakos, K., Busato, P., Moshou, D., Pearson, S., & Bochtis, D. (2018). Machine Learning in Agriculture: A Review. Sensors, 18(8), 2674. doi:10.3390/s18082674Meichen, L., Jun, C., Xiang, Z., Lu, W., & Yongpeng, T. (2018). Dynamic obstacle detection based on multi-sensor information fusion. IFAC-PapersOnLine, 51(17), 861-865. doi:10.1016/j.ifacol.2018.08.086Louwagie, G., Northey, G., Finn, J. A., & Purvis, G. (2012). Development of indicators for assessment of the environmental impact of livestock farming in Ireland using the Agri-environmental Footprint Index. Ecological Indicators, 18, 149-162. doi:10.1016/j.ecolind.2011.11.003Luque, A., Peralta, M. E., de las Heras, A., & Córdoba, A. (2017). State of the Industry 4.0 in the Andalusian food sector. Procedia Manufacturing, 13, 1199-1205. doi:10.1016/j.promfg.2017.09.195Malhotra, S., Doja, M. ., Alam, B., & Alam, M. (2017). Bigdata analysis and comparison of bigdata analytic approches. 2017 International Conference on Computing, Communication and Automation (ICCCA). doi:10.1109/ccaa.2017.8229821Mayer, J., Gunst, L., Mäder, P., Samson, M.-F., Carcea, M., Narducci, V., … Dubois, D. (2015). «Productivity, quality and sustainability of winter wheat under long-term conventional and organic management in Switzerland». European Journal of Agronomy, 65, 27-39. doi:10.1016/j.eja.2015.01.002McGuire, S., & Sperling, L. (2013). Making seed systems more resilient to stress. Global Environmental Change, 23(3), 644-653. doi:10.1016/j.gloenvcha.2013.02.001Mekala, M. S., & Viswanathan, P. (2017). A Survey: Smart agriculture IoT with cloud computing. 2017 International conference on Microelectronic Devices, Circuits and Systems (ICMDCS). doi:10.1109/icmdcs.2017.8211551Mishra, S., Mishra, D., & Santra, G. H. (2016). Applications of Machine Learning Techniques in Agricultural Crop Production: A Review Paper. Indian Journal of Science and Technology, 9(38). doi:10.17485/ijst/2016/v9i38/95032Mocnej, J., Seah, W. K. G., Pekar, A., & Zolotova, I. (2018). Decentralised IoT Architecture for Efficient Resources Utilisation. IFAC-PapersOnLine, 51(6), 168-173. doi:10.1016/j.ifacol.2018.07.148Mohanraj, I., Gokul, V., Ezhilarasie, R., & Umamakeswari, A. (2017). Intelligent drip irrigation and fertigation using wireless sensor networks. 2017 IEEE Technological Innovations in ICT for Agriculture and Rural Development (TIAR). doi:10.1109/tiar.2017.8273682Montecinos, J., Ouhimmou, M., Chauhan, S., & Paquet, M. (2018). Forecasting multiple waste collecting sites for the agro-food industry. Journal of Cleaner Production, 187, 932-939. doi:10.1016/j.jclepro.2018.03.127Yandun Narváez, F., Gregorio, E., Escolà, A., Rosell-Polo, J. R., Torres-Torriti, M., & Auat Cheein, F. (2018). Terrain classification using ToF sensors for the enhancement of agricultural machinery traversability. Journal of Terramechanics, 76, 1-13. doi:10.1016/j.jterra.2017.10.005Nguyen, T., ZHOU, L., Spiegler, V., Ieromonachou, P., & Lin, Y. (2018). Big data analytics in supply chain management: A state-of-the-art literature review. Computers & Operations Research, 98, 254-264. doi:10.1016/j.cor.2017.07.004Nilsson, E., Hochrainer-Stigler, S., Mochizuki, J., & Uvo, C. B. (2016). Hydro-climatic variability and agricultural production on the shores of Lake Chad. Environmental Development, 20, 15-30. doi:10.1016/j.envdev.2016.09.001Nolan, P., Paley, D. A., & Kroeger, K. (2017). Multi-UAS path planning for non-uniform data collection in precision agriculture. 2017 IEEE Aerospace Conference. doi:10.1109/aero.2017.7943794Oberholster, C., Adendorff, C., & Jonker, K. (2015). Financing Agricultural Production from a Value Chain Perspective. Outlook on Agriculture, 44(1), 49-60. doi:10.5367/oa.2015.0197Opara, L. U., & Mazaud, F. (2001). Food Traceability from Field to Plate. Outlook on Agriculture, 30(4), 239-247. doi:10.5367/000000001101293724Ott, K.-H., Aranı́bar, N., Singh, B., & Stockton, G. W. (2003). Metabonomics classifies pathways affected by bioactive compounds. Artificial neural network classification of NMR spectra of plant extracts. Phytochemistry, 62(6), 971-985. doi:10.1016/s0031-9422(02)00717-3Panetto, H. (2007). Towards a classification framework for interoperability of enterprise applications. International Journal of Computer Integrated Manufacturing, 20(8), 727-740. doi:10.1080/09511920600996419Paulraj, G. J. L., Francis, S. A. J., Peter, J. D., & Jebadurai, I. J. (2018). Resource-aware virtual machine migration in IoT cloud. Future Generation Computer Systems, 85, 173-183. doi:10.1016/j.future.2018.03.024Pilli, S. K., Nallathambi, B., George, S. J., & Diwanji, V. (2015). eAGROBOT — A robot for early crop disease detection using image processing. 2015 2nd International Conference on Electronics and Communication Systems (ICECS). doi:10.1109/ecs.2015.7124873Pinho, P., Dias, T., Cruz, C., Sim Tang, Y., Sutton, M. A., Martins-Loução, M.-A., … Branquinho, C. (2011). Using lichen functional diversity to assess the effects of atmospheric ammonia in Mediterranean woodlands. Journal of Applied Ecology, 48(5), 1107-1116. doi:10.1111/j.1365-2664.2011.02033.xPrathibha, S. R., Hongal, A., & Jyothi, M. P. (2017). IOT Based Monitoring System in Smart Agriculture. 2017 International Conference on Recent Advances in Electronics and Communication Technology (ICRAECT). doi:10.1109/icraect.2017.52Reardon, T., Echeverria, R., Berdegué, J., Minten, B., Liverpool-Tasie, S., Tschirley, D., & Zilberman, D. (2019). Rapid transformation of food systems in developing regions: Highlighting the role of agricultural research & innovations. Agricultural Systems, 172, 47-59. doi:10.1016/j.agsy.2018.01.022Ribarics, P. (2016). Big Data and its impact on agriculture. Ecocycles, 2(1), 33-34. doi:10.19040/ecocycles.v2i1.54Rosell, J. R., & Sanz, R. (2012). A review of methods and applications of the geometric characterization of tree crops in agricultural activities. Computers and Electronics in Agriculture, 81, 124-141. doi:10.1016/j.compag.2011.09.007Roshanianfard, A., Kamata, T., & Noguchi, N. (2018). Performance evaluation of harvesting robot for heavy-weight crops. IFAC-PapersOnLine, 51(17), 332-338. doi:10.1016/j.ifacol.2018.08.200Routroy, S., & Behera, A. (2017). Agriculture supply chain. Journal of Agribusiness in Developing and Emerging Economies, 7(3), 275-302. doi:10.1108/jadee-06-2016-0039Ruiz-Garcia, L., Steinberger, G., & Rothmund, M. (2010). A model and prototype implementation for tracking and tracing agricultural batch products along the food chain. Food Control, 21(2), 112-121. doi:10.1016/j.foodcont.2008.12.003Saggi, M. K., & Jain, S. (2018). A survey towards an integration of big
    corecore