326,583 research outputs found

    Multimodal Sentiment Analysis of Instagram Using Cross-media Bag-of-words Model

    Full text link
    Instagram, one of social media sharing services has increasing growth of use and popularity during recent years. Photos or videos shared by Instagram users are challenging to be mined and analyzed for some purposes. One type of studies can be applied to Instagram data is sentiment analysis, a field of study that learn and analyze people opinion, sentiment, and (or) evaluation about something. Sentiment analysis applied to Instagram can be used as analytics tool for some business purposes such as user behavior, market intelligence and user evaluation. This research aimed to analyze sentiment contained on Instagrams post by considering two modalities: images and English text on its caption. The Cross-media Bag-of-Words Model (CBM) was applied for analyzing the sentiment contained on Instagrams post. CBM treated text and image features as a unit of vector representation. These cross-media features then classified using logistic regression to predict sentiment values which categorized into three classes: positive, negative and neutral. Simulation results showed that the combination of unigram text features and 56-length images features achieves the highest accuracy. The accuracy achieved is 87.2%. Keywords : Instagram, sentiment analysis, Cross-media Bag-of-Words Model (CBM), logistic regression, classification Bibliography [1] D. Borth, R. Ji, T. Chen, T. Breuel, and S.-F. Chang, “Large-scale visual sentiment ontology and detectors using adjective noun pairs,” in Proceedings of the 21st ACM International Conference on Multimedia, ser. MM '13. New York, NY, USA: ACM, 2013, pp. 223–232. [2] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin, “Liblinear: A library for large linear classification,” J. Mach. Learn. Res., vol. 9, pp. 1871– 1874, Jun. 2008. [3] E. Ferrara, R. Interdonato, and A. Tagarelli, “Online popularity and topical interests through the lens of instagram,” in Proceedings of the 25th ACM Conference on Hypertext and Social Media, ser. HT '14. New York, NY, USA: ACM, 2014, pp. 24–34. [4] N. Gunawardena, J. Plumb, N. Xiao, and H. Zhang, “Instagram hashtag sentiment analysis,” in University of Utah CS530/CS630 Conference of Machine Learning 2013. Universiti of Utah CS530/CS630 Conference of Machine Learning 2013, 2013. [5] J. Han, Data Mining: Concepts and Techniques. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2005. [6] M. Hu and B. Liu, “Mining and summarizing customer reviews,” inProceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2004, pp. 168–177.[7] Y. Hu, L. Manikonda, and S. Kambhampati, “What we instagram: A first analysis of instagram photo content and user types,” International AAAI Conference on Weblogs and Social Media, 2014. [8] L. S. Huey and R. Yazdanifard, “How instagram can be used as a tool in social networking marketing,” Help College of Art and Technology Malaysia, Tech. Rep., 2014. [9] D. Jurafsky and J. H. Martin, Speech and Language Processing: An introduction to natural language processing, computational linguistics, and speech recognition(2nd Edition). Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 2009. [10] S. G. K and S. Joseph, “Text classification by augmenting bag of words ( bow ) representation with co-occurrence feature,” IOSR Journal of Computer Engineering (IOSR-JCE), vol. 16, pp. 34–38, 1 2014. [11] B. B. Kachru, The Alchemy of English: The Spread, Functions and Models of Non-native Englishes. Champaign: University of Illinois Press, 1990. [12] S. S. Keerthi and C.-J. Lin, “Asymptotic behaviors of support vector machines with gaussian kernel,” Neural Comput., vol. 15, no. 7, pp. 1667–1689, Jul. 2003. [13] M. Koppel and J. Schler, “The importance of neutral examples for learning sentiment,” in In Workshop on the Analysis of Informal and Formal Information Exchange during Negotiations, 2005.[14] A. Kowcika, A. Gupta, K. Sondhi, N. Shivhre, and R. Kumar, “Sentiment analysis for social media,” International Journal of Advanced Research in Computer Science and Software Engineering, vol. 3, no. 7, 7 2013. [15] F.-F. Li and P. Perona, “A bayesian hierarchical model for learning natural scene categories,” in Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) - Volume 2 - Volume 02, ser. CVPR '05. Washington, DC, USA: IEEE Computer Society, 2005, pp. 524–531. [16] B. Liu, Sentiment Analysis and Opinion Mining. Morgan and Claypool Publisher, 2012. [17] W.-Y. Ma and K.-J. Chen, “A bottom-up merging algorithm for chinese unknown word extraction,” in Proceedings of the Second SIGHAN Workshop on Chinese Language Processing - Volume 17, ser. SIGHAN '03. Stroudsburg, PA, USA: Association for Computational Linguistics, 2003, pp. 31–38. [18] Z. McCune, “Consumer production in social media networks: A case study of the instagram iphone app,” Ph.D. dissertation, Dr. John Thompson, 2011. [19] W. Medhata, A. Hassanb, and H. Korashyb, “Sentiment analysis algorithms and applications: A survey,” Ain Shams Engineering Journal, 2014. [20] L.-P. Morency, R. Mihalcea, and P. Doshi, “Toward multimodal sentiment analysis: Harvesting opinion from the web,” in International Conference on Multimodal Interface, 2011. [21] A. Pak and P. Paroubek, “Twitter as a corpus for sentiment analysis and opinion mining,” in Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC'10), N. C. C. Chair), K. Choukri, B. Maegaard, J. Mariani, J. Odijk, S. Piperidis, M. Rosner, and D. Tapias, Eds. Valletta, Malta: European Language Resources Association (ELRA), may 2010.[22] B. Pang and L. Lee, “Opinion mining and sentiment analysis,” Foundation and Trends in Information Retrieval, vol. 2, no. 1-2, p. 4, 2008. [23] B. Pang, L. Lee, and S. Vaithyanathan, “Thumbs up?: Sentiment classification using machine learning techniques,” in Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing - Volume 10, ser. EMNLP '02. Stroudsburg, PA, USA: Association for Computational Linguistics, 2002, pp. 79–86. [24] C.-Y. J. Peng, K. L. Lee, and G. M. Ingersol, “An introduction to logistic regression analysis and reporting,” The Journal of Educational Research, vol. 96, no. 1, September/October 2002. [25] V. V. Piyush Bansal, Romil Bansal, “Towards deep semantic analysis of hashtags,” 37th European Conference on Information Retrieval, 2015. [26] R. Plutchik, Emotion: A Psycho-evolutionary Synthesis. Harper and Row, 1980. [27] S. Poria, A. Hussain, and E. Cambria, “Beyond text based sentiment analysis: Towards multi-modal systems,” University of Stirling, Stirling FK9 4LA, UK, Tech. Rep., 2013. [Online]. Available: http://www.cs.stir.ac.uk/~spo/publication/resources/cogcomp.pdf [28] E. Praseyto, Data Mining Konsep dan Aplikasi Menggunakan Matlab. Yogyakarta: Andi, 2012.[29] A. Qazi, R. G. Raj, M. Tahir, E. Cambria, and K. B. S. Syed, “Enhancing business intelligence by means of suggestive reviews,” The Scientific World Journal, vol. 2014, June 2014. [30] R. Schapire, “Machine learning algorithms for classification,” Princeton University, Tech. Rep. [31] S. Siersdorfer, E. Minack, F. Deng, and J. Hare, “Analyzing and predicting sentiment of images on the social web,” in Proceedings of the International Conference on Multimedia, ser. MM '10. New York, NY, USA: ACM, 2010, pp. 715–718. [32] T. H. Silva, P. O. S. V. de Melo, J. M. Almeida, J. Salles, and A. A. F. Loureiro, “A comparison of foursquare and instagram to the study of city dynamics and urban social behavior,” in Proceedings of the 2Nd ACM SIGKDD International Workshop on Urban Computing, ser. UrbComp '13. New York, NY, USA: ACM, 2013, pp. 4:1–4:8. [33] P. N. Stuart Russell, Artificial Intelligence A Modern Approach, M. Hirsch, Ed. New Jersey: Pearson Education, 2010. [34] M. Taboada, J. Brooke, M. Tofiloski, K. Voll, and M. Stede, “Lexicon-based methods for sentiment analysis,” Comput. Linguist., vol. 37, no. 2, pp. 267– 307, Jun. 2011. [35] C.-F. Tsai, “Bag-of-words representation in image annotation: A review,” ISRN Artificial Intelligence, p. 19, 2012. [36] A. J. Viera and J. M. Garrett, “Understanding interobserver agreement: The kappa statistic,” Family Medicine, vol. 37, no. 5, pp. 360–363, May 2005. [37] M. Wang, D. Cao, L. Li, S. Li, and R. Ji, “Microblog sentiment analysis based on cross-media bag-of-words model,” in Proceedings of International Conference on Internet Multimedia Computing and Service, ser. ICIMCS '14. New York, NY, USA: ACM, 2014, pp. 76:76–76:80. [38] A. Westerski, “Sentiment analysis: Introduction and the state of the art overview,” Universidad Politecnica de Madrid, Spain, Tech. Rep., 2009. [39] F. Yu, L. Cao, R. Feris, J. Smith, and S.-F. Chang, “Designing category-level attributes for discriminative visual recognition,” in IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), Portland, OR, June 2013. [40] L. Yu and H. Liu, “Efficiently handling feature redundancy in high-dimensional data,” in Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ser. KDD '03. New York, NY, USA: ACM, 2003, pp. 685–690. [41] J. Yuan, S. Mcdonough, Q. You, and J. Luo, “Sentribute: Image sentiment analysis from a mid-level perspective,” in Proceedings of the Second International Workshop on Issues of Sentiment Discovery and Opinion Mining, ser. WISDOM '13. New York, NY, USA: ACM, 2013, pp. 10:1– 10:8

    PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume

    Full text link
    We present a compact but effective CNN model for optical flow, called PWC-Net. PWC-Net has been designed according to simple and well-established principles: pyramidal processing, warping, and the use of a cost volume. Cast in a learnable feature pyramid, PWC-Net uses the cur- rent optical flow estimate to warp the CNN features of the second image. It then uses the warped features and features of the first image to construct a cost volume, which is processed by a CNN to estimate the optical flow. PWC-Net is 17 times smaller in size and easier to train than the recent FlowNet2 model. Moreover, it outperforms all published optical flow methods on the MPI Sintel final pass and KITTI 2015 benchmarks, running at about 35 fps on Sintel resolution (1024x436) images. Our models are available on https://github.com/NVlabs/PWC-Net.Comment: CVPR 2018 camera ready version (with github link to Caffe and PyTorch code

    A factorization approach to inertial affine structure from motion

    Full text link
    We consider the problem of reconstructing a 3-D scene from a moving camera with high frame rate using the affine projection model. This problem is traditionally known as Affine Structure from Motion (Affine SfM), and can be solved using an elegant low-rank factorization formulation. In this paper, we assume that an accelerometer and gyro are rigidly mounted with the camera, so that synchronized linear acceleration and angular velocity measurements are available together with the image measurements. We extend the standard Affine SfM algorithm to integrate these measurements through the use of image derivatives

    STV-based Video Feature Processing for Action Recognition

    Get PDF
    In comparison to still image-based processes, video features can provide rich and intuitive information about dynamic events occurred over a period of time, such as human actions, crowd behaviours, and other subject pattern changes. Although substantial progresses have been made in the last decade on image processing and seen its successful applications in face matching and object recognition, video-based event detection still remains one of the most difficult challenges in computer vision research due to its complex continuous or discrete input signals, arbitrary dynamic feature definitions, and the often ambiguous analytical methods. In this paper, a Spatio-Temporal Volume (STV) and region intersection (RI) based 3D shape-matching method has been proposed to facilitate the definition and recognition of human actions recorded in videos. The distinctive characteristics and the performance gain of the devised approach stemmed from a coefficient factor-boosted 3D region intersection and matching mechanism developed in this research. This paper also reported the investigation into techniques for efficient STV data filtering to reduce the amount of voxels (volumetric-pixels) that need to be processed in each operational cycle in the implemented system. The encouraging features and improvements on the operational performance registered in the experiments have been discussed at the end

    A discussion on the validation tests employed to compare human action recognition methods using the MSR Action3D dataset

    Get PDF
    This paper aims to determine which is the best human action recognition method based on features extracted from RGB-D devices, such as the Microsoft Kinect. A review of all the papers that make reference to MSR Action3D, the most used dataset that includes depth information acquired from a RGB-D device, has been performed. We found that the validation method used by each work differs from the others. So, a direct comparison among works cannot be made. However, almost all the works present their results comparing them without taking into account this issue. Therefore, we present different rankings according to the methodology used for the validation in orden to clarify the existing confusion.Comment: 16 pages and 7 table

    Robust Resolution-Enhanced Prostate Segmentation in Magnetic Resonance and Ultrasound Images through Convolutional Neural Networks

    Full text link
    [EN] Prostate segmentations are required for an ever-increasing number of medical applications, such as image-based lesion detection, fusion-guided biopsy and focal therapies. However, obtaining accurate segmentations is laborious, requires expertise and, even then, the inter-observer variability remains high. In this paper, a robust, accurate and generalizable model for Magnetic Resonance (MR) and three-dimensional (3D) Ultrasound (US) prostate image segmentation is proposed. It uses a densenet-resnet-based Convolutional Neural Network (CNN) combined with techniques such as deep supervision, checkpoint ensembling and Neural Resolution Enhancement. The MR prostate segmentation model was trained with five challenging and heterogeneous MR prostate datasets (and two US datasets), with segmentations from many different experts with varying segmentation criteria. The model achieves a consistently strong performance in all datasets independently (mean Dice Similarity Coefficient -DSC- above 0.91 for all datasets except for one), outperforming the inter-expert variability significantly in MR (mean DSC of 0.9099 vs. 0.8794). When evaluated on the publicly available Promise12 challenge dataset, it attains a similar performance to the best entries. In summary, the model has the potential of having a significant impact on current prostate procedures, undercutting, and even eliminating, the need of manual segmentations through improvements in terms of robustness, generalizability and output resolutionThis work has been partially supported by a doctoral grant of the Spanish Ministry of Innovation and Science, with reference FPU17/01993Pellicer-Valero, OJ.; GonzĂĄlez-PĂ©rez, V.; Casanova RamĂłn-Borja, JL.; MartĂ­n GarcĂ­a, I.; Barrios Benito, M.; Pelechano GĂłmez, P.; Rubio-Briones, J.... (2021). Robust Resolution-Enhanced Prostate Segmentation in Magnetic Resonance and Ultrasound Images through Convolutional Neural Networks. Applied Sciences. 11(2):1-17. https://doi.org/10.3390/app11020844S117112Marra, G., Ploussard, G., Futterer, J., & Valerio, M. (2019). Controversies in MR targeted biopsy: alone or combined, cognitive versus software-based fusion, transrectal versus transperineal approach? World Journal of Urology, 37(2), 277-287. doi:10.1007/s00345-018-02622-5Ahdoot, M., Lebastchi, A. H., Turkbey, B., Wood, B., & Pinto, P. A. (2019). Contemporary treatments in prostate cancer focal therapy. Current Opinion in Oncology, 31(3), 200-206. doi:10.1097/cco.0000000000000515Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60(6), 84-90. doi:10.1145/3065386Allen, P. D., Graham, J., Williamson, D. C., & Hutchinson, C. E. (s. f.). Differential Segmentation of the Prostate in MR Images Using Combined 3D Shape Modelling and Voxel Classification. 3rd IEEE International Symposium on Biomedical Imaging: Macro to Nano, 2006. doi:10.1109/isbi.2006.1624940Freedman, D., Radke, R. J., Tao Zhang, Yongwon Jeong, Lovelock, D. M., & Chen, G. T. Y. (2005). Model-based segmentation of medical imagery by matching distributions. IEEE Transactions on Medical Imaging, 24(3), 281-292. doi:10.1109/tmi.2004.841228Klein, S., van der Heide, U. A., Lips, I. M., van Vulpen, M., Staring, M., & Pluim, J. P. W. (2008). Automatic segmentation of the prostate in 3D MR images by atlas matching using localized mutual information. Medical Physics, 35(4), 1407-1417. doi:10.1118/1.2842076Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, 234-241. doi:10.1007/978-3-319-24574-4_28He, K., Gkioxari, G., Dollar, P., & Girshick, R. (2017). Mask R-CNN. 2017 IEEE International Conference on Computer Vision (ICCV). doi:10.1109/iccv.2017.322Shelhamer, E., Long, J., & Darrell, T. (2017). Fully Convolutional Networks for Semantic Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(4), 640-651. doi:10.1109/tpami.2016.2572683He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). doi:10.1109/cvpr.2016.90Milletari, F., Navab, N., & Ahmadi, S.-A. (2016). V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation. 2016 Fourth International Conference on 3D Vision (3DV). doi:10.1109/3dv.2016.79Zhu, Q., Du, B., Turkbey, B., Choyke, P. L., & Yan, P. (2017). Deeply-supervised CNN for prostate segmentation. 2017 International Joint Conference on Neural Networks (IJCNN). doi:10.1109/ijcnn.2017.7965852To, M. N. N., Vu, D. Q., Turkbey, B., Choyke, P. L., & Kwak, J. T. (2018). Deep dense multi-path neural network for prostate segmentation in magnetic resonance imaging. International Journal of Computer Assisted Radiology and Surgery, 13(11), 1687-1696. doi:10.1007/s11548-018-1841-4Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely Connected Convolutional Networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). doi:10.1109/cvpr.2017.243Zhu, Y., Wei, R., Gao, G., Ding, L., Zhang, X., Wang, X., & Zhang, J. (2018). Fully automatic segmentation on prostate MR images based on cascaded fully convolution network. Journal of Magnetic Resonance Imaging, 49(4), 1149-1156. doi:10.1002/jmri.26337Wang, Y., Ni, D., Dou, H., Hu, X., Zhu, L., Yang, X., 
 Wang, T. (2019). Deep Attentive Features for Prostate Segmentation in 3D Transrectal Ultrasound. IEEE Transactions on Medical Imaging, 38(12), 2768-2778. doi:10.1109/tmi.2019.2913184LemaĂźtre, G., MartĂ­, R., Freixenet, J., Vilanova, J. C., Walker, P. M., & Meriaudeau, F. (2015). Computer-Aided Detection and diagnosis for prostate cancer based on mono and multi-parametric MRI: A review. Computers in Biology and Medicine, 60, 8-31. doi:10.1016/j.compbiomed.2015.02.009Litjens, G., Toth, R., van de Ven, W., Hoeks, C., Kerkstra, S., van Ginneken, B., 
 Madabhushi, A. (2014). Evaluation of prostate segmentation algorithms for MRI: The PROMISE12 challenge. Medical Image Analysis, 18(2), 359-373. doi:10.1016/j.media.2013.12.002Zhu, Q., Du, B., & Yan, P. (2020). Boundary-Weighted Domain Adaptive Neural Network for Prostate MR Image Segmentation. IEEE Transactions on Medical Imaging, 39(3), 753-763. doi:10.1109/tmi.2019.2935018He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. 2015 IEEE International Conference on Computer Vision (ICCV). doi:10.1109/iccv.2015.123Pan, S. J., & Yang, Q. (2010). A Survey on Transfer Learning. IEEE Transactions on Knowledge and Data Engineering, 22(10), 1345-1359. doi:10.1109/tkde.2009.191Smith, L. N. (2017). Cyclical Learning Rates for Training Neural Networks. 2017 IEEE Winter Conference on Applications of Computer Vision (WACV). doi:10.1109/wacv.2017.58Abraham, N., & Khan, N. M. (2019). A Novel Focal Tversky Loss Function With Improved Attention U-Net for Lesion Segmentation. 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019). doi:10.1109/isbi.2019.8759329Lei, Y., Tian, S., He, X., Wang, T., Wang, B., Patel, P., 
 Yang, X. (2019). Ultrasound prostate segmentation based on multidirectional deeply supervised V‐Net. Medical Physics, 46(7), 3194-3206. doi:10.1002/mp.13577Orlando, N., Gillies, D. J., Gyacskov, I., Romagnoli, C., D’Souza, D., & Fenster, A. (2020). Automatic prostate segmentation using deep learning on clinically diverse 3D transrectal ultrasound images. Medical Physics, 47(6), 2413-2426. doi:10.1002/mp.14134Karimi, D., Zeng, Q., Mathur, P., Avinash, A., Mahdavi, S., Spadinger, I., 
 Salcudean, S. E. (2019). Accurate and robust deep learning-based segmentation of the prostate clinical target volume in ultrasound images. Medical Image Analysis, 57, 186-196. doi:10.1016/j.media.2019.07.005PROMISE12 Resultshttps://promise12.grand-challenge.org/Isensee, F., Jaeger, P. F., Kohl, S. A. A., Petersen, J., & Maier-Hein, K. H. (2020). nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nature Methods, 18(2), 203-211. doi:10.1038/s41592-020-01008-

    Colour Constancy: Biologically-inspired Contrast Variant Pooling Mechanism

    Get PDF
    Pooling is a ubiquitous operation in image processing algorithms that allows for higher-level processes to collect relevant low-level features from a region of interest. Currently, max-pooling is one of the most commonly used operators in the computational literature. However, it can lack robustness to outliers due to the fact that it relies merely on the peak of a function. Pooling mechanisms are also present in the primate visual cortex where neurons of higher cortical areas pool signals from lower ones. The receptive fields of these neurons have been shown to vary according to the contrast by aggregating signals over a larger region in the presence of low contrast stimuli. We hypothesise that this contrast-variant-pooling mechanism can address some of the shortcomings of max-pooling. We modelled this contrast variation through a histogram clipping in which the percentage of pooled signal is inversely proportional to the local contrast of an image. We tested our hypothesis by applying it to the phenomenon of colour constancy where a number of popular algorithms utilise a max-pooling step (e.g. White-Patch, Grey-Edge and Double-Opponency). For each of these methods, we investigated the consequences of replacing their original max-pooling by the proposed contrast-variant-pooling. Our experiments on three colour constancy benchmark datasets suggest that previous results can significantly improve by adopting a contrast-variant-pooling mechanism
    • 

    corecore