107,011 research outputs found

    Tractable approximate deduction for OWL

    Get PDF
    Acknowledgements This work has been partially supported by the European project Marrying Ontologies and Software Technologies (EU ICT2008-216691), the European project Knowledge Driven Data Exploitation (EU FP7/IAPP2011-286348), the UK EPSRC project WhatIf (EP/J014354/1). The authors thank Prof. Ian Horrocks and Dr. Giorgos Stoilos for their helpful discussion on role subsumptions. The authors thank Rafael S. Gonçalves et al. for providing their hotspots ontologies. The authors also thank BoC-group for providing their ADOxx Metamodelling ontologies.Peer reviewedPostprin

    Complementary Lipschitz continuity results for the distribution of intersections or unions of independent random sets in finite discrete spaces

    Get PDF
    We prove that intersections and unions of independent random sets in finite spaces achieve a form of Lipschitz continuity. More precisely, given the distribution of a random set Ξ\Xi, the function mapping any random set distribution to the distribution of its intersection (under independence assumption) with Ξ\Xi is Lipschitz continuous with unit Lipschitz constant if the space of random set distributions is endowed with a metric defined as the LkL_k norm distance between inclusion functionals also known as commonalities. Moreover, the function mapping any random set distribution to the distribution of its union (under independence assumption) with Ξ\Xi is Lipschitz continuous with unit Lipschitz constant if the space of random set distributions is endowed with a metric defined as the LkL_k norm distance between hitting functionals also known as plausibilities. Using the epistemic random set interpretation of belief functions, we also discuss the ability of these distances to yield conflict measures. All the proofs in this paper are derived in the framework of Dempster-Shafer belief functions. Let alone the discussion on conflict measures, it is straightforward to transcribe the proofs into the general (non necessarily epistemic) random set terminology

    Continuous Improvement Through Knowledge-Guided Analysis in Experience Feedback

    Get PDF
    Continuous improvement in industrial processes is increasingly a key element of competitiveness for industrial systems. The management of experience feedback in this framework is designed to build, analyze and facilitate the knowledge sharing among problem solving practitioners of an organization in order to improve processes and products achievement. During Problem Solving Processes, the intellectual investment of experts is often considerable and the opportunities for expert knowledge exploitation are numerous: decision making, problem solving under uncertainty, and expert configuration. In this paper, our contribution relates to the structuring of a cognitive experience feedback framework, which allows a flexible exploitation of expert knowledge during Problem Solving Processes and a reuse such collected experience. To that purpose, the proposed approach uses the general principles of root cause analysis for identifying the root causes of problems or events, the conceptual graphs formalism for the semantic conceptualization of the domain vocabulary and the Transferable Belief Model for the fusion of information from different sources. The underlying formal reasoning mechanisms (logic-based semantics) in conceptual graphs enable intelligent information retrieval for the effective exploitation of lessons learned from past projects. An example will illustrate the application of the proposed approach of experience feedback processes formalization in the transport industry sector

    Rough matroids based on coverings

    Full text link
    The introduction of covering-based rough sets has made a substantial contribution to the classical rough sets. However, many vital problems in rough sets, including attribution reduction, are NP-hard and therefore the algorithms for solving them are usually greedy. Matroid, as a generalization of linear independence in vector spaces, it has a variety of applications in many fields such as algorithm design and combinatorial optimization. An excellent introduction to the topic of rough matroids is due to Zhu and Wang. On the basis of their work, we study the rough matroids based on coverings in this paper. First, we investigate some properties of the definable sets with respect to a covering. Specifically, it is interesting that the set of all definable sets with respect to a covering, equipped with the binary relation of inclusion ⊆\subseteq, constructs a lattice. Second, we propose the rough matroids based on coverings, which are a generalization of the rough matroids based on relations. Finally, some properties of rough matroids based on coverings are explored. Moreover, an equivalent formulation of rough matroids based on coverings is presented. These interesting and important results exhibit many potential connections between rough sets and matroids.Comment: 15page

    Time-Aware Probabilistic Knowledge Graphs

    Get PDF
    The emergence of open information extraction as a tool for constructing and expanding knowledge graphs has aided the growth of temporal data, for instance, YAGO, NELL and Wikidata. While YAGO and Wikidata maintain the valid time of facts, NELL records the time point at which a fact is retrieved from some Web corpora. Collectively, these knowledge graphs (KG) store facts extracted from Wikipedia and other sources. Due to the imprecise nature of the extraction tools that are used to build and expand KG, such as NELL, the facts in the KG are weighted (a confidence value representing the correctness of a fact). Additionally, NELL can be considered as a transaction time KG because every fact is associated with extraction date. On the other hand, YAGO and Wikidata use the valid time model because they maintain facts together with their validity time (temporal scope). In this paper, we propose a bitemporal model (that combines transaction and valid time models) for maintaining and querying bitemporal probabilistic knowledge graphs. We study coalescing and scalability of marginal and MAP inference. Moreover, we show that complexity of reasoning tasks in atemporal probabilistic KG carry over to the bitemporal setting. Finally, we report our evaluation results of the proposed model
    • …
    corecore