215 research outputs found

    Neural network for estimating and compensating the nonlinear characteristics of nonstationary complex systems

    Get PDF
    Issued as final reportNational Science Foundation (U.S

    Harmonic Identification Using an Echo State Network for Adaptive Control of an Active Filter in an Electric Ship

    Get PDF
    A shunt active filter is a power electronic device used in a power system to decrease ldquoharmonic current pollutionrdquo caused by nonlinear loads. The Echo State Network (ESN) has been widely used as an effective system identifier with much faster training speed than the other Recurrent Neural Networks (RNNs). However, only a few attempts have been made to use an ESN as a system controller. As the first attempt to use an ESN in indirect neurocontrol, this paper proposes an indirect adaptive neurocontrol scheme using two ESNs to control a shunt active filter in a multiple-reference frame. As the first step in the proposed neurocontrol scheme, an online system identifier using an ESN is implemented in the Innovative Integration M67 card consisting of the TMS320C6701 processor to identify the load harmonics in a typical electric ship power system. The shunt active filter and the ship power system are simulated using a Real-Time Digital Simulator (RTDS) system. The required computational effort and the system identification accuracy of an ESN with different dynamic reservoir size are discussed, which can provide useful information for similar applications in the future. The testing results in the real-time implementation show that the ESN is capable of providing fast and accurate system identification for the indirect neurocontrol of a shunt active filter

    PSO based Neural Networks vs. Traditional Statistical Models for Seasonal Time Series Forecasting

    Full text link
    Seasonality is a distinctive characteristic which is often observed in many practical time series. Artificial Neural Networks (ANNs) are a class of promising models for efficiently recognizing and forecasting seasonal patterns. In this paper, the Particle Swarm Optimization (PSO) approach is used to enhance the forecasting strengths of feedforward ANN (FANN) as well as Elman ANN (EANN) models for seasonal data. Three widely popular versions of the basic PSO algorithm, viz. Trelea-I, Trelea-II and Clerc-Type1 are considered here. The empirical analysis is conducted on three real-world seasonal time series. Results clearly show that each version of the PSO algorithm achieves notably better forecasting accuracies than the standard Backpropagation (BP) training method for both FANN and EANN models. The neural network forecasting results are also compared with those from the three traditional statistical models, viz. Seasonal Autoregressive Integrated Moving Average (SARIMA), Holt-Winters (HW) and Support Vector Machine (SVM). The comparison demonstrates that both PSO and BP based neural networks outperform SARIMA, HW and SVM models for all three time series datasets. The forecasting performances of ANNs are further improved through combining the outputs from the three PSO based models.Comment: 4 figures, 4 tables, 31 references, conference proceeding

    Comparison of Feedforward and Feedback Neural Network Architectures for Short Term Wind Speed Prediction

    Get PDF
    This paper compares three types of neural networks trained using particle swarm optimization (PSO) for use in the short term prediction of wind speed. The three types of neural networks compared are the multi-layer perceptron (MLP) neural network, Elman recurrent neural network, and simultaneous recurrent neural network (SRN). Each network is trained and tested using meteorological data of one week measured at the National Renewable Energy Laboratory National Wind Technology Center near Boulder, CO. Results show that while the recurrent neural networks outperform the MLP in the best and average case with a lower overall mean squared error, the MLP performance is comparable. The better performance of the feedback architectures is also shown using the mean absolute relative error. While the SRN performance is superior, the increase in required training time for the SRN over the other networks may be a constraint, depending on the application

    Learning Nonlinear Functions with MLPs and SRNs

    Get PDF
    In this paper, nonlinear functions generated by randomly initialized multilayer perceptrons (MLPs) and simultaneous recurrent neural networks (SRNs) are learned by MLPs and SRNs. Training SRNs is a challenging task and a new learning algorithm - DEPSO is introduced. DEPSO is a standard particle swarm optimization (PSO) algorithm with the addition of a differential evolution step to aid in swarm convergence. The results from DEPSO are compared with the standard backpropagation (BP) and PSO algorithms. It is further verified that functions generated by SRNs are harder to learn than those generated by MLPs but DEPSO provides better learning capabilities for the functions generated by MLPs and SRNs as compared to BP and PSO. These three algorithms are also trained on several benchmark functions to confirm results

    A PSO with Quantum Infusion Algorithm for Training Simultaneous Recurrent Neural Networks

    Get PDF
    Simultaneous recurrent neural network (SRN) is one of the most powerful neural network architectures well suited for estimation and control of complex time varying nonlinear dynamic systems. SRN training is a difficult problem especially if multiple inputs and multiple outputs (MIMO) are involved. Particle swarm optimization with quantum infusion (PSO-QI) is introduced in this paper for training such SRNs. In order to illustrate the capability of the PSO-QI training algorithm, a wide area monitor (WAM) for a power system is developed using a multiple inputs multiple outputs Elman SRN. The SRN estimates speed deviations of four generators in a multimachine power system. Since MIMO structured SRNs are hard to train, a two step approach for training is presented with PSO-QI. The performance of PSO-QI is compared to that of the standard PSO algorithm. Results demonstrate that the SRN trained with the PSO-QI in the two step approach tracks the speed deviations of the generators with the minimum error

    A Review on EEG Signals Based Emotion Recognition

    Get PDF
    Emotion recognition has become a very controversial issue in brain-computer interfaces (BCIs). Moreover, numerous studies have been conducted in order to recognize emotions. Also, there are several important definitions and theories about human emotions. In this paper we try to cover important topics related to the field of emotion recognition. We review several studies which are based on analyzing electroencephalogram (EEG) signals as a biological marker in emotion changes. Considering low cost, good time and spatial resolution, EEG has become very common and is widely used in most BCI applications and studies. First, we state some theories and basic definitions related to emotions. Then some important steps of an emotion recognition system like different kinds of biologic measurements (EEG, electrocardiogram [EEG], respiration rate, etc), offline vs online recognition methods, emotion stimulation types and common emotion models are described. Finally, the recent and most important studies are reviewed
    • …
    corecore