8 research outputs found

    Operating System Concepts for Reconfigurable Computing: Review and Survey

    Get PDF
    One of the key future challenges for reconfigurable computing is to enable higher design productivity and a more easy way to use reconfigurable computing systems for users that are unfamiliar with the underlying concepts. One way of doing this is to provide standardization and abstraction, usually supported and enforced by an operating system. This article gives historical review and a summary on ideas and key concepts to include reconfigurable computing aspects in operating systems. The article also presents an overview on published and available operating systems targeting the area of reconfigurable computing. The purpose of this article is to identify and summarize common patterns among those systems that can be seen as de facto standard. Furthermore, open problems, not covered by these already available systems, are identified

    Класифікація та архітектурні особливості програмованих мультипроцесорних систем-на-кристалі

    Get PDF
    Provided general information on embedded multiprocessor systems-on-chip based on FPGA (FPGA-MPSoC). Completed a comprehensive analysis of the architectural features and provided Shih rock classification FPGA-MPSoC. Powered overview of recent research in the development of FPGA-MPSoC. A wide circle of such systems in order to study trends in architecture and all problems solvedПредоставлено общую информацию о встроенных мультипроцессорных систем-на-кристалле на базе ПЛИС (FPGA-MPSoC). Выполнено всесторонний анализ архитектурных особенностей и предоставлена ​​широкая классификация FPGA-MPSoC. Приведены обзор последних исследований в области разработки FPGA-MPSoC. Представлен широкий круг таких систем с целью исследования всех тенденциях архитектуры и решаемых задачПредоставлено общую информацию о встроенных мультипроцессорных систем-на-кристалле на базе ПЛИС (FPGA-MPSoC). Выполнено всесторонний анализ архитектурных особенностей и предоставлена ​​широкая классификация FPGA-MPSoC. Приведены обзор последних исследований в области разработки FPGA-MPSoC. Представлен широкий круг таких систем с целью исследования всех тенденциях архитектуры и решаемых зада

    Rapid Prototyping and Exploration Environment for Generating C-to-Hardware-Compilers

    Get PDF
    There is today an ever-increasing demand for more computational power coupled with a desire to minimize energy requirements. Hardware accelerators currently appear to be the best solution to this problem. While general purpose computation with GPUs seem to be very successful in this area, they perform adequately only in those cases where the data access patterns and utilized algorithms fit the underlying architecture. ASICs on the other hand can yield even better results in terms of performance and energy consumption, but are very inflexible, as they are manufactured with an application specific circuitry. Field Programmable Gate Arrays (FPGAs) represent a combination of approaches: With their application specific hardware they provide high computational power while requiring, for many applications, less energy than a CPU or a GPU. On the other hand they are far more flexible than an ASIC due to their reconfigurability. The only remaining problem is the programming of the FPGAs, as they are far more difficult to program compared to regular software. To allow common software developers, who have at best very limited knowledge in hardware design, to make use of these devices, tools were developed that take a regular high level language and generate hardware from it. Among such tools, C-to-HDL compilers are a particularly wide-spread approach. These compilers attempt to translate common C code into a hardware description language from which a datapath is generated. Most of these compilers have many restrictions for the input and differ in their underlying generated micro architecture, their scheduling method, their applied optimizations, their execution model and even their target hardware. Thus, a comparison of a certain aspect alone, like their implemented scheduling method or their generated micro architecture, is almost impossible, as they differ in so many other aspects. This work provides a survey of the existing C-to-HDL compilers and presents a new approach to evaluating and exploring different micro architectures for dynamic scheduling used by such compilers. From a mathematically formulated rule set the Triad compiler generates a backend for the Scale compiler framework, which then implements a hardware generation backend with described dynamic scheduling. While more than a factor of four slower than hardware from highly optimized compilers, this environment allows easy comparison and exploration of different rule sets and the micro architecture for the dynamically scheduled datapaths generated from them. For demonstration purposes a rule set modeling the COCOMA token flow model from the COMRADE 2.0 compiler was implemented. Multiple variants of it were explored: Savings of up to 11% of the required hardware resources were possible

    Runtime Hardware Reconfiguration in Wireless Sensor Networks for Condition Monitoring

    Get PDF
    The integration of miniaturized heterogeneous electronic components has enabled the deployment of tiny sensing platforms empowered by wireless connectivity known as wireless sensor networks. Thanks to an optimized duty-cycled activity, the energy consumption of these battery-powered devices can be reduced to a level where several years of operation is possible. However, the processing capability of currently available wireless sensor nodes does not scale well with the observation of phenomena requiring a high sampling resolution. The large amount of data generated by the sensors cannot be handled efficiently by low-power wireless communication protocols without a preliminary filtering of the information relevant for the application. For this purpose, energy-efficient, flexible, fast and accurate processing units are required to extract important features from the sensor data and relieve the operating system from computationally demanding tasks. Reconfigurable hardware is identified as a suitable technology to fulfill these requirements, balancing implementation flexibility with performance and energy-efficiency. While both static and dynamic power consumption of field programmable gate arrays has often been pointed out as prohibitive for very-low-power applications, recent programmable logic chips based on non-volatile memory appear as a potential solution overcoming this constraint. This thesis first verifies this assumption with the help of a modular sensor node built around a field programmable gate array based on Flash technology. Short and autonomous duty-cycled operation combined with hardware acceleration efficiently drop the energy consumption of the device in the considered context. However, Flash-based devices suffer from restrictions such as long configuration times and limited resources, which reduce their suitability for complex processing tasks. A template of a dynamically reconfigurable architecture built around coarse-grained reconfigurable function units is proposed in a second part of this work to overcome these issues. The module is conceived as an overlay of the sensor node FPGA increasing the implementation flexibility and introducing a standardized programming model. Mechanisms for virtual reconfiguration tailored for resource-constrained systems are introduced to minimize the overhead induced by this genericity. The definition of this template architecture leaves room for design space exploration and application- specific customization. Nevertheless, this aspect must be supported by appropriate design tools which facilitate and automate the generation of low-level design files. For this purpose, a software tool is introduced to graphically configure the architecture and operation of the hardware accelerator. A middleware service is further integrated into the wireless sensor network operating system to bridge the gap between the hardware and the design tools, enabling remote reprogramming and scheduling of the hardware functionality at runtime. At last, this hardware and software toolchain is applied to real-world wireless sensor network deployments in the domain of condition monitoring. This category of applications often require the complex analysis of signals in the considered range of sampling frequencies such as vibrations or electrical currents, making the proposed system ideally suited for the implementation. The flexibility of the approach is demonstrated by taking examples with heterogeneous algorithmic specifications. Different data processing tasks executed by the sensor node hardware accelerator are modified at runtime according to application requests

    Acoustic tubes with maximal and minimal resonance frequencies

    Full text link
    corecore