20 research outputs found

    Estimation of Indoor Location Through Magnetic Field Data: An Approach Based On Convolutional Neural Networks

    Get PDF
    Estimation of indoor location represents an interesting research topic since it is a main contextual variable for location bases services (LBS), eHealth applications and commercial systems, among others. For instance, hospitals require location data of their employees, as well as the location of their patients to offer services based on these locations at the correct moments of their needs. Several approaches have been proposed to tackle this problem using different types of artificial or natural signals (ie, wifi, bluetooth, rfid, sound, movement, etc.). In this work, it is proposed the development of an indoor location estimator system, relying in the data provided by the magnetic field of the rooms, which has been demonstrated that is unique and quasi-stationary. For this purpose, it is analyzed the spectral evolution of the magnetic field data viewed as a bidimensional heatmap, avoiding temporal dependencies. A Fourier transform is applied to the bidimensional heatmap of the magnetic field data to feed a convolutional neural network (CNN) to generate a model to estimate the user’s location in a building. The evaluation of the CNN model to deploy an indoor location system (ILS) is done through measuring the Receiver Operating Characteristic (ROC) curve to observe the behavior in terms of sensitivity and specificity. Our experiments achieve a 0.99 Area Under the Curve (AUC) in the training data-set and a 0.74 in a total blind data set.Estimation of indoor location represents an interesting research topic since it is a main contextual variable for location bases services (LBS), eHealth applications and commercial systems, among others. For instance, hospitals require location data of their employees, as well as the location of their patients to offer services based on these locations at the correct moments of their needs. Several approaches have been proposed to tackle this problem using different types of artificial or natural signals (ie, wifi, bluetooth, rfid, sound, movement, etc.). In this work, it is proposed the development of an indoor location estimator system, relying in the data provided by the magnetic field of the rooms, which has been demonstrated that is unique and quasi-stationary. For this purpose, it is analyzed the spectral evolution of the magnetic field data viewed as a bidimensional heatmap, avoiding temporal dependencies. A Fourier transform is applied to the bidimensional heatmap of the magnetic field data to feed a convolutional neural network (CNN) to generate a model to estimate the user’s location in a building. The evaluation of the CNN model to deploy an indoor location system (ILS) is done through measuring the Receiver Operating Characteristic (ROC) curve to observe the behavior in terms of sensitivity and specificity. Our experiments achieve a 0.99 Area Under the Curve (AUC) in the training data-set and a 0.74 in a total blind data set

    Flying Free: A Research Overview of Deep Learning in Drone Navigation Autonomy

    Get PDF
    With the rise of Deep Learning approaches in computer vision applications, significant strides have been made towards vehicular autonomy. Research activity in autonomous drone navigation has increased rapidly in the past five years, and drones are moving fast towards the ultimate goal of near-complete autonomy. However, while much work in the area focuses on specific tasks in drone navigation, the contribution to the overall goal of autonomy is often not assessed, and a comprehensive overview is needed. In this work, a taxonomy of drone navigation autonomy is established by mapping the definitions of vehicular autonomy levels, as defined by the Society of Automotive Engineers, to specific drone tasks in order to create a clear definition of autonomy when applied to drones. A top–down examination of research work in the area is conducted, focusing on drone navigation tasks, in order to understand the extent of research activity in each area. Autonomy levels are cross-checked against the drone navigation tasks addressed in each work to provide a framework for understanding the trajectory of current research. This work serves as a guide to research in drone autonomy with a particular focus on Deep Learning-based solutions, indicating key works and areas of opportunity for development of this area in the future

    IoT-Based Applications in Healthcare Devices

    Get PDF
    The last decade has witnessed extensive research in the field of healthcare services and their technological upgradation. To be more specific, the Internet of Things (IoT) has shown potential application in connecting various medical devices, sensors, and healthcare professionals to provide quality medical services in a remote location. This has improved patient safety, reduced healthcare costs, enhanced the accessibility of healthcare services, and increased operational efficiency in the healthcare industry. The current study gives an up-to-date summary of the potential healthcare applications of IoT- (HIoT-) based technologies. Herein, the advancement of the application of the HIoT has been reported from the perspective of enabling technologies, healthcare services, and applications in solving various healthcare issues. Moreover, potential challenges and issues in the HIoT system are also discussed. In sum, the current study provides a comprehensive source of information regarding the different fields of application of HIoT intending to help future researchers, who have the interest to work and make advancements in the field to gain insight into the topic

    Artificial intelligence in the cyber domain: Offense and defense

    Get PDF
    Artificial intelligence techniques have grown rapidly in recent years, and their applications in practice can be seen in many fields, ranging from facial recognition to image analysis. In the cybersecurity domain, AI-based techniques can provide better cyber defense tools and help adversaries improve methods of attack. However, malicious actors are aware of the new prospects too and will probably attempt to use them for nefarious purposes. This survey paper aims at providing an overview of how artificial intelligence can be used in the context of cybersecurity in both offense and defense.Web of Science123art. no. 41

    A Review on IoT Deep Learning UAV Systems for Autonomous Obstacle Detection and Collision Avoidance

    Get PDF
    [Abstract] Advances in Unmanned Aerial Vehicles (UAVs), also known as drones, offer unprecedented opportunities to boost a wide array of large-scale Internet of Things (IoT) applications. Nevertheless, UAV platforms still face important limitations mainly related to autonomy and weight that impact their remote sensing capabilities when capturing and processing the data required for developing autonomous and robust real-time obstacle detection and avoidance systems. In this regard, Deep Learning (DL) techniques have arisen as a promising alternative for improving real-time obstacle detection and collision avoidance for highly autonomous UAVs. This article reviews the most recent developments on DL Unmanned Aerial Systems (UASs) and provides a detailed explanation on the main DL techniques. Moreover, the latest DL-UAV communication architectures are studied and their most common hardware is analyzed. Furthermore, this article enumerates the most relevant open challenges for current DL-UAV solutions, thus allowing future researchers to define a roadmap for devising the new generation affordable autonomous DL-UAV IoT solutions.Xunta de Galicia; ED431C 2016-045Xunta de Galicia; ED431C 2016-047Xunta de Galicia; , ED431G/01Centro Singular de Investigación de Galicia; PC18/01Agencia Estatal de Investigación de España; TEC2016-75067-C4-1-

    Progress in the Knowledge, Application and Influence of Extremely Low Frequency Signals

    Get PDF
    This paper describes the characteristics of contributions made by researchers worldwide in the field of ELF (extremely low frequency) waves from 1957 to 2019. The data were collected through the Scopus database and processed with analytical and bibliometric techniques. The selection of the keywords is an essential step, because ELF has a very different meaning in some areas of medicine, where it is associated with a gene. A total of 12,436 documents were worked on in 12 thematic communities according to their collaborative relationships between authors and documents. Studies included authors publishing in the different thematic areas and the country where the USA stands first with more researchers in this theme than China and Japan. Documents were analyzed from the temporal perspective, their overall contribution, means of publication, and the language of the publication. Research requires extra effort and multidisciplinary collaboration to improve the knowledge, the application, and influence of these field

    Comprehensive review of vision-based fall detection systems

    Get PDF
    Vision-based fall detection systems have experienced fast development over the last years. To determine the course of its evolution and help new researchers, the main audience of this paper, a comprehensive revision of all published articles in the main scientific databases regarding this area during the last five years has been made. After a selection process, detailed in the Materials and Methods Section, eighty-one systems were thoroughly reviewed. Their characterization and classification techniques were analyzed and categorized. Their performance data were also studied, and comparisons were made to determine which classifying methods best work in this field. The evolution of artificial vision technology, very positively influenced by the incorporation of artificial neural networks, has allowed fall characterization to become more resistant to noise resultant from illumination phenomena or occlusion. The classification has also taken advantage of these networks, and the field starts using robots to make these systems mobile. However, datasets used to train them lack real-world data, raising doubts about their performances facing real elderly falls. In addition, there is no evidence of strong connections between the elderly and the communities of researchers

    Advanced Mathematics and Computational Applications in Control Systems Engineering

    Get PDF
    Control system engineering is a multidisciplinary discipline that applies automatic control theory to design systems with desired behaviors in control environments. Automatic control theory has played a vital role in the advancement of engineering and science. It has become an essential and integral part of modern industrial and manufacturing processes. Today, the requirements for control precision have increased, and real systems have become more complex. In control engineering and all other engineering disciplines, the impact of advanced mathematical and computational methods is rapidly increasing. Advanced mathematical methods are needed because real-world control systems need to comply with several conditions related to product quality and safety constraints that have to be taken into account in the problem formulation. Conversely, the increment in mathematical complexity has an impact on the computational aspects related to numerical simulation and practical implementation of the algorithms, where a balance must also be maintained between implementation costs and the performance of the control system. This book is a comprehensive set of articles reflecting recent advances in developing and applying advanced mathematics and computational applications in control system engineering

    Antennas and Propagation Aspects for Emerging Wireless Communication Technologies

    Get PDF
    The increasing demand for high data rate applications and the delivery of zero-latency multimedia content drives technological evolutions towards the design and implementation of next-generation broadband wireless networks. In this context, various novel technologies have been introduced, such as millimeter wave (mmWave) transmission, massive multiple input multiple output (MIMO) systems, and non-orthogonal multiple access (NOMA) schemes in order to support the vision of fifth generation (5G) wireless cellular networks. The introduction of these technologies, however, is inextricably connected with a holistic redesign of the current transceiver structures, as well as the network architecture reconfiguration. To this end, ultra-dense network deployment along with distributed massive MIMO technologies and intermediate relay nodes have been proposed, among others, in order to ensure an improved quality of services to all mobile users. In the same framework, the design and evaluation of novel antenna configurations able to support wideband applications is of utmost importance for 5G context support. Furthermore, in order to design reliable 5G systems, the channel characterization in these frequencies and in the complex propagation environments cannot be ignored because it plays a significant role. In this Special Issue, fourteen papers are published, covering various aspects of novel antenna designs for broadband applications, propagation models at mmWave bands, the deployment of NOMA techniques, radio network planning for 5G networks, and multi-beam antenna technologies for 5G wireless communications
    corecore