15,256 research outputs found

    Visual and computational analysis of structure-activity relationships in high-throughput screening data

    Get PDF
    Novel analytic methods are required to assimilate the large volumes of structural and bioassay data generated by combinatorial chemistry and high-throughput screening programmes in the pharmaceutical and agrochemical industries. This paper reviews recent work in visualisation and data mining that can be used to develop structure-activity relationships from such chemical/biological datasets

    Sobiva omaduste profiiliga ĂŒhendite tuvastamine keemiliste struktuuride andmekogudest

    Get PDF
    Keemiliste ĂŒhendite digitaalsete andmebaaside kasutuselevĂ”tuga kaasneb vajadus leida neist arvutuslikke vahendeid kasutades sobivate omadustega molekule. Probleem on eriti huvipakkuv ravimitööstuses, kus aja- ja ressursimahukate katsete asendamine arvutustega, vĂ”imaldab mĂ€rkimisvÀÀrset sÀÀstu. Kuigi tĂ€napĂ€evaste arvutusmeetodite piiratud vĂ”imsuse tĂ”ttu ei ole lĂ€hemas tulevikus vĂ”imalik kogu ravimidisaini protsessi algusest lĂ”puni arvutitesse ĂŒmber kolida, on lugu teine, kui vaadelda suuri andmekogusid. Arvutusmeetod, mis töötab teadaoleva statistilise vea piires, visates vĂ€lja mĂ”ne sobiva ĂŒhendi ja lugedes mĂ”ni ekslikult aktiivseks, tihendab lĂ”ppkokkuvĂ”ttes andmekomplekti tuntaval mÀÀral huvitavate ĂŒhendite suhtes. SeetĂ”ttu on ravimiarenduse lihtsamate ja vĂ€henĂ”udlikkumade etappide puhul, nagu juhtĂŒhendite vĂ”i ravimikandidaatide leidmine, edukalt vĂ”imalik rakendada arvutuslikke vahendeid. Selline tegevus on tuntud virtuaalsĂ”elumisena ning kĂ€esolevasse töösse on sellest avarast ja kiiresti arenevast valdkonnast valitud mĂ”ningad suunad, ning uuritud nende vĂ”imekust ja tulemuslikkust erinevate projektide raames. Töö tulemusena on valminud arvutusmudelid teatud tĂŒĂŒpi ĂŒhendite HIV proteaasi vastase aktiivsuse ja tsĂŒtotoksilisuse hindamiseks; koostatud uus sĂ”elumismeetod; leitud potentsiaalsed ligandid HIV proteaasile ja pöördtranskriptaasile; ning kokku pandud farmakokineetiliste filtritega eeltöödeldud andmekomplekt – mugav lĂ€htepositsioon edasisteks töödeks.With the implementation of digital chemical compound libraries, creates the need for finding compounds from them that fit the desired profile. The problem is of particular interest in drug design, where replacing the resource-intensive experiments with computational methods, would result in significant savings in time and cost. Although due to the limitations of current computational methods, it is not possible in foreseeable future to transfer all of the drug development process into computers, it is a different story with large molecular databases. An in silico method, working within a known error margin, is still capable of significantly concentrating the data set in terms of attractive compounds. That allows the use of computational methods in less stringent steps of drug development, such as finding lead compounds or drug candidates. This approach is known as virtual screening, and today it is a vast and prospective research area comprising of several paradigms and numerous individual methods. The present thesis takes a closer look on some of them, and evaluates their performance in the course of several projects. The results of the thesis include computational models to estimate the HIV protease inhibition activity and cytotoxicity of certain type of compounds; a few prospective ligands for HIV protease and reverse transcriptase; pre-filtered dataset of compounds – convenient starting point for subsequent projects; and finally a new virtual screening method was developed

    STOCHASTIC CHOICE ANALYSIS OF TOURISM DESTINATIONS

    Get PDF
    The analysis of tourist destination choice, defined by intra-country administrative units and by product types "coastal/inland and village/city", permits the characterisation of tourist flow behaviour, which is fundamental for public planning and business management. In this study, we analyse the determinant factors of tourist destination choice, proposing various research hypotheses relative to the impact of destination attributes and the personal characteristics of tourists. The methodology applied estimates Nested and Random Coefficients Multinomial Logit Models, which allow control over possible correlations among different destinations. The empirical application is realised in Spain on a sample of 3,781 individuals and allows us to conclude that prices, distance to the destination and personal motivations are determinants in destination choice.Tourism Marketing, Intra-country destination, Coastal/inland, Village/city, Nested and Random Coefficients Logit Models.

    Quantitative analyses of the 3D nuclear landscape recorded with super-resolved fluorescence microscopy

    Get PDF
    Recent advancements of super-resolved fluorescence microscopy have revolutionized microscopic studies of cells, including the exceedingly complex structural organization of cell nuclei in space and time. In this paper we describe and discuss tools for (semi-) automated, quantitative 3D analyses of the spatial nuclear organization. These tools allow the quantitative assessment of highly resolved different chromatin compaction levels in individual cell nuclei, which reflect functionally different regions or sub-compartments of the 3D nuclear landscape, and measurements of absolute distances between sites of different chromatin compaction. In addition, these tools allow 3D mapping of specific DNA/RNA sequences and nuclear proteins relative to the 3D chromatin compaction maps and comparisons of multiple cell nuclei. The tools are available in the free and open source R packages nucim and bioimagetools. We discuss the use of masks for the segmentation of nuclei and the use of DNA stains, such as DAPI, as a proxy for local differences in chromatin compaction. We further discuss the limitations of 3D maps of the nuclear landscape as well as problems of the biological interpretation of such data

    Computational approaches to virtual screening in human central nervous system therapeutic targets

    Get PDF
    In the past several years of drug design, advanced high-throughput synthetic and analytical chemical technologies are continuously producing a large number of compounds. These large collections of chemical structures have resulted in many public and commercial molecular databases. Thus, the availability of larger data sets provided the opportunity for developing new knowledge mining or virtual screening (VS) methods. Therefore, this research work is motivated by the fact that one of the main interests in the modern drug discovery process is the development of new methods to predict compounds with large therapeutic profiles (multi-targeting activity), which is essential for the discovery of novel drug candidates against complex multifactorial diseases like central nervous system (CNS) disorders. This work aims to advance VS approaches by providing a deeper understanding of the relationship between chemical structure and pharmacological properties and design new fast and robust tools for drug designing against different targets/pathways. To accomplish the defined goals, the first challenge is dealing with big data set of diverse molecular structures to derive a correlation between structures and activity. However, an extendable and a customizable fully automated in-silico Quantitative-Structure Activity Relationship (QSAR) modeling framework was developed in the first phase of this work. QSAR models are computationally fast and powerful tool to screen huge databases of compounds to determine the biological properties of chemical molecules based on their chemical structure. The generated framework reliably implemented a full QSAR modeling pipeline from data preparation to model building and validation. The main distinctive features of the designed framework include a)efficient data curation b) prior estimation of data modelability and, c)an-optimized variable selection methodology that was able to identify the most biologically relevant features responsible for compound activity. Since the underlying principle in QSAR modeling is the assumption that the structures of molecules are mainly responsible for their pharmacological activity, the accuracy of different structural representation approaches to decode molecular structural information largely influence model predictability. However, to find the best approach in QSAR modeling, a comparative analysis of two main categories of molecular representations that included descriptor-based (vector space) and distance-based (metric space) methods was carried out. Results obtained from five QSAR data sets showed that distance-based method was superior to capture the more relevant structural elements for the accurate characterization of molecular properties in highly diverse data sets (remote chemical space regions). This finding further assisted to the development of a novel tool for molecular space visualization to increase the understanding of structure-activity relationships (SAR) in drug discovery projects by exploring the diversity of large heterogeneous chemical data. In the proposed visual approach, four nonlinear DR methods were tested to represent molecules lower dimensionality (2D projected space) on which a non-parametric 2D kernel density estimation (KDE) was applied to map the most likely activity regions (activity surfaces). The analysis of the produced probabilistic surface of molecular activities (PSMAs) from the four datasets showed that these maps have both descriptive and predictive power, thus can be used as a spatial classification model, a tool to perform VS using only structural similarity of molecules. The above QSAR modeling approach was complemented with molecular docking, an approach that predicts the best mode of drug-target interaction. Both approaches were integrated to develop a rational and re-usable polypharmacology-based VS pipeline with improved hits identification rate. For the validation of the developed pipeline, a dual-targeting drug designing model against Parkinson’s disease (PD) was derived to identify novel inhibitors for improving the motor functions of PD patients by enhancing the bioavailability of dopamine and avoiding neurotoxicity. The proposed approach can easily be extended to more complex multi-targeting disease models containing several targets and anti/offtargets to achieve increased efficacy and reduced toxicity in multifactorial diseases like CNS disorders and cancer. This thesis addresses several issues of cheminformatics methods (e.g., molecular structures representation, machine learning, and molecular similarity analysis) to improve and design new computational approaches used in chemical data mining. Moreover, an integrative drug-designing pipeline is designed to improve polypharmacology-based VS approach. This presented methodology can identify the most promising multi-targeting candidates for experimental validation of drug-targets network at the systems biology level in the drug discovery process

    Styles of underplating in the Marin Headlands Terrane, Franciscan Complex, California

    Full text link
    This is a pre-copy-editing, author-produced PDF of an article accepted for publication in The Geological Society of America Special Papers following peer review. The definitive publisher-authenticated version: "Regalla, C., Rowe, C., Harrichhausen, N., Tarling, M. and Singh, J., 2018. Styles of underplating in the Marin Headlands Terrane, Franciscan Complex, California. GSA Special Publications no. 534" is available online at: http://rock.geosociety.org/Store/detail.aspx?id=spe534.Geophysical images and structural cross-sections of accretionary wedges are usually aligned orthogonal to the subduction trench axis. These sections often reveal underplated duplexes of subducted oceanic sediment and igneous crust that record trench-normal shortening and wedge thickening facilitated by down-stepping of the dĂ©collement. However, this approach may under-recognize trench-parallel strain and the effects of faulting associated with flexure of the downgoing plate. New mapping of a recently exposed transect across a portion of the Marin Headlands terrane, California, USA documents evidence for structural complexity over short spatio-temporal scales within an underplated system. We document the geometry, kinematics, vergence and internal architecture of faults and folds along ~2.5 km of section, and identify six previously unmapped intra-formational imbricate thrusts and thirteen high-angle faults that accommodate shortening and flattening of the underthrust section. Thrust faults occur within nearly every lithology without clear preference for any stratigraphic horizon, and fold vergence varies between imbricate sheets by ~10-40°. In our map area, imbricate bounding thrusts have relatively narrow damage zones (≀5-10 m), sharp, discrete fault cores, and lack veining, in contrast to the wide, highly-veined fault zones previously documented in the Marin Headlands terrane. The spacing of imbricate thrusts combined with paleo-convergence rates indicates relatively rapid generation of new fault surfaces on ~10-100 ka timescales, a process which may contribute to strain hardening and locking within the seismogenic zone. The structural and kinematic complexity documented in the Marin Headlands are an example of the short spatial and temporal scales of heterogeneity that may characterize regions of active underplating. Such features are smaller than the typical spatial resolution of geophysical data from active subduction thrusts, and may not be readily resolved, thus highlighting the need for cross-comparison of geophysical data with field analogues when evaluating the kinematic and mechanical processes of underplating

    A quantitative structure-biodegradation relationship (QSBR) approach to predict biodegradation rates of aromatic chemicals

    Get PDF
    The objective of this work was to develop a QSBR model for the prioritization of organic pollutants based on biodegradation rates from a database containing globally harmonized biodegradation tests using relevant molecular descriptors. To do this, we first categorized the chemicals into three groups (Group 1: simple aromatic chemicals with a single ring, Group 2: aromatic chemicals with multiple rings and Group3: Group 1 plus Group 2) based on molecular descriptors, estimated the first order biodegradation rate of the chemicals using rating values derived from the BIOWIN3 model, and finally developed, validated and defined the applicability domain of models for each group using a multiple linear regression approach. All the developed QSBR models complied with OECD principles for QSAR validation. The biodegradation rate in the models for the two groups (Group 2 and 3 chemicals) are associated with abstract molecular descriptors that provide little relevant practical information towards understanding the relationship between chemical structure and biodegradation rates. However, molecular descriptors associated with the QSBR model for Group 1 chemicals (R2 = 0.89, Q2loo = 0.87) provided information on properties that can readily be scrutinised and interpreted in relation to biodegradation processes. In combination, these results lead to the conclusion that QSBRs can be an alternative tool to estimate the persistence of chemicals, some of which can provide further insights into those factors affecting biodegradation

    Review of QSAR Models and Software Tools for predicting Biokinetic Properties

    Get PDF
    In the assessment of industrial chemicals, cosmetic ingredients, and active substances in pesticides and biocides, metabolites and degradates are rarely tested for their toxicologcal effects in mammals. In the interests of animal welfare and cost-effectiveness, alternatives to animal testing are needed in the evaluation of these types of chemicals. In this report we review the current status of various types of in silico estimation methods for Absorption, Distribution, Metabolism and Excretion (ADME) properties, which are often important in discriminating between the toxicological profiles of parent compounds and their metabolites/degradation products. The review was performed in a broad sense, with emphasis on QSARs and rule-based approaches and their applicability to estimation of oral bioavailability, human intestinal absorption, blood-brain barrier penetration, plasma protein binding, metabolism and. This revealed a vast and rapidly growing literature and a range of software tools. While it is difficult to give firm conclusions on the applicability of such tools, it is clear that many have been developed with pharmaceutical applications in mind, and as such may not be applicable to other types of chemicals (this would require further research investigation). On the other hand, a range of predictive methodologies have been explored and found promising, so there is merit in pursuing their applicability in the assessment of other types of chemicals and products. Many of the software tools are not transparent in terms of their predictive algorithms or underlying datasets. However, the literature identifies a set of commonly used descriptors that have been found useful in ADME prediction, so further research and model development activities could be based on such studies.JRC.DG.I.6-Systems toxicolog
    • 

    corecore