1,828 research outputs found

    Human-Robot Handshaking: A Review

    Full text link
    For some years now, the use of social, anthropomorphic robots in various situations has been on the rise. These are robots developed to interact with humans and are equipped with corresponding extremities. They already support human users in various industries, such as retail, gastronomy, hotels, education and healthcare. During such Human-Robot Interaction (HRI) scenarios, physical touch plays a central role in the various applications of social robots as interactive non-verbal behaviour is a key factor in making the interaction more natural. Shaking hands is a simple, natural interaction used commonly in many social contexts and is seen as a symbol of greeting, farewell and congratulations. In this paper, we take a look at the existing state of Human-Robot Handshaking research, categorise the works based on their focus areas, draw out the major findings of these areas while analysing their pitfalls. We mainly see that some form of synchronisation exists during the different phases of the interaction. In addition to this, we also find that additional factors like gaze, voice facial expressions etc. can affect the perception of a robotic handshake and that internal factors like personality and mood can affect the way in which handshaking behaviours are executed by humans. Based on the findings and insights, we finally discuss possible ways forward for research on such physically interactive behaviours.Comment: Pre-print version. Accepted for publication in the International Journal of Social Robotic

    Conditioned haptic perception for 3D localization of nodules in soft tissue palpation with a variable stiffness probe

    Get PDF
    This paper provides a solution for fast haptic information gain during soft tissue palpation using a Variable Lever Mechanism (VLM) probe. More specifically, we investigate the impact of stiffness variation of the probe to condition likelihood functions of the kinesthetic force and tactile sensors measurements during a palpation task for two sweeping directions. Using knowledge obtained from past probing trials or Finite Element (FE) simulations, we implemented this likelihood conditioning in an autonomous palpation control strategy. Based on a recursive Bayesian inferencing framework, this new control strategy adapts the sweeping direction and the stiffness of the probe to detect abnormal stiff inclusions in soft tissues. This original control strategy for compliant palpation probes shows a sub-millimeter accuracy for the 3D localization of the nodules in a soft tissue phantom as well as a 100% reliability detecting the existence of nodules in a soft phantom

    Solar Shading Products and their effect on Overheating, Well-being, Productivity, and Sustainability in the UK Built Environment

    Get PDF
    Blinds and shutters have long been identified as effective methods of attenuating daylight, reducing glare, and managing the thermal gains and losses through the glazing in a building. Shading products can provide energy savings and alter the internal environment to improve occupant comfort. Changes in occupants’ perceptions of their comfort can have a subsequent effect on their perceived health, well-being, and actual productivity. Currently, the extent that differing shading products reduce internal temperature increase in UK homes is not well understood. Furthermore, the way shading products alter the internal environmental conditions overall and how these variations affect an occupant’s health, well-being, and productivity has not been fully investigated. If shading products are used to obtain the various performance benefits, they require occupants to operate (open and close) them effectively. More sophisticated shading products incorporate motors and sensors to improve the operation of such products. These systems require a large number of natural resources, so an assessment is needed to identify whether the operational energy savings provided from the use of shading products outweigh the environmental impact of the products themselves throughout their lifetime. To explore these gaps in research, three real-world, two laboratory, and one desktop study were conducted. Two of the real-world studies were carried out in domestic buildings (an apartment and a semi-detached house) and the third was conducted in a non-domestic office. Data was collected when the shading products were extended and retracted, and statistical analysis was used to compare the data. In the domestic studies, quantitative data were collected relating to the internal temperature conditions. In the non-domestic study, quantitative and qualitative data were collected relating to the changes in a broader range of internal environment conditions and the experiences of the occupants in open and closed blind conditions. This included investigating occupants’ perceptions of comfort, health, well-being, and their subjective and objective productivity. The domestic studies showed that when internal and external shading products were closed, there was a significant reduction in internal temperature increase when comparisons were made between a room with and without shading. Shading products mitigated overheating risk, suggesting that they can improve the thermal comfort of building occupants in warmer weather conditions in UK homes. Of the two system types tested, external shading was most effective. The non-domestic study results confirmed there are both positive and negative benefits to having shading products extended in warmer conditions. The objective productivity of occupants was both negatively and positively affected and this differed depending on the type of task or cognitive function being tested. The two laboratory-based studies investigated the acoustic performance of internal shading products which are conventionally installed in UK buildings. This investigated the impact they have on sound reverberation and the acoustic transmission of sound. Overall, the results showed internal shading products can reduce reverberant sound and how they are installed (specifically the distance from the window) affects the amount of reverberant sound absorbed. It also identified differing fabrics have different capabilities in reducing sound transmitted into buildings. However, further research is needed to quantify the impact of the transmissive properties of shading fabrics when installed in a real building. The desktop study involved a screening Life Cycle Assessment (LCA) of an external automated Venetian blind, an internal motorised roller blind and an internal manually operated roller blind. The LCA incorporated the real-world semi-detached house previously investigated as part of the functional unit to carry out the LCA. The operational energy savings of the different types of shading products assessed were stepped as the energy saving potential of shading products varies depending on how they are used and operated. The comparative analysis of the three shading systems suggests the control strategy (automated, motorised, or manual) alters how much operational energy needs to be saved and how long the shading product must be installed for before it becomes environmentally neutral and then environmentally beneficial

    Cognition in action: Imaging brain/body dynamics in mobile humans

    Full text link
    We have recently developed a mobile brain imaging method (MoBI), that allows for simultaneous recording of brain and body dynamics of humans actively behaving in and interacting with their environment. A mobile imaging approach was needed to study cognitive processes that are inherently based on the use of human physical structure to obtain behavioral goals. This review gives examples of the tight coupling between human physical structure with cognitive processing and the role of supraspinal activity during control of human stance and locomotion. Existing brain imaging methods for actively behaving participants are described and new sensor technology allowing for mobile recordings of different behavioral states in humans is introduced. Finally, we review recent work demonstrating the feasibility of a MoBI system that was developed at the Swartz Center for Computational Neuroscience at the University of California, San Diego, demonstrating the range of behavior that can be investigated with this method. Copyright © 2011 by Walter de Gruyter, Berlin, Boston

    Personal Mobility With Synchronous Trunk-Knee Passive Exoskeleton: Optimizing Human-Robot Energy Transfer

    Full text link
    We present a personal mobility device for lower-body impaired users through a light-weighted exoskeleton on wheels. On its core, a novel passive exoskeleton provides postural transition leveraging natural body postures with support to the trunk on sit-to-stand and stand-to-sit (STS) transitions by a single gas spring as an energy storage unit. We propose a direction-dependent coupling of knees and hip joints through a double-pulley wire system, transferring energy from the torso motion towards balancing the moment load at the knee joint actuator. Herewith, the exoskeleton maximizes energy transfer and the naturalness of the user's movement. We introduce an embodied user interface for hands-free navigation through a torso pressure sensing with minimal trunk rotations, resulting on average 19∘±13∘19^{\circ} \pm 13^{\circ} on six unimpaired users. We evaluated the design for STS assistance on 11 unimpaired users observing motions and muscle activity during the transitions. Results comparing assisted and unassisted STS transitions validated a significant reduction (up to 68%68\% p<0.01p<0.01) at the involved muscle groups. Moreover, we showed it feasible through natural torso leaning movements of +12∘±6.5∘+12^{\circ}\pm 6.5^{\circ} and −13.7∘±6.1∘- 13.7^{\circ} \pm 6.1^{\circ} for standing and sitting, respectively. Passive postural transition assistance warrants further work on increasing its applicability and broadening the user population.Comment: IEEE/ASME Transactions on Mechatronics. 2022. 11 pages. doi: 10.1109/TMECH.2021.313545
    • …
    corecore