940 research outputs found

    The Anthropomorphic Hand Assessment Protocol (AHAP)

    Get PDF
    The progress in the development of anthropomorphic hands for robotic and prosthetic applications has not been followed by a parallel development of objective methods to evaluate their performance. The need for benchmarking in grasping research has been recognized by the robotics community as an important topic. In this study we present the Anthropomorphic Hand Assessment Protocol (AHAP) to address this need by providing a measure for quantifying the grasping ability of artificial hands and comparing hand designs. To this end, the AHAP uses 25 objects from the publicly available Yale-CMU-Berkeley Object and Model Set thereby enabling replicability. It is composed of 26 postures/tasks involving grasping with the eight most relevant human grasp types and two non-grasping postures. The AHAP allows to quantify the anthropomorphism and functionality of artificial hands through a numerical Grasping Ability Score (GAS). The AHAP was tested with different hands, the first version of the hand of the humanoid robot ARMAR-6 with three different configurations resulting from attachment of pads to fingertips and palm as well as the two versions of the KIT Prosthetic Hand. The benchmark was used to demonstrate the improvements of these hands in aspects like the grasping surface, the grasp force and the finger kinematics. The reliability, consistency and responsiveness of the benchmark have been statistically analyzed, indicating that the AHAP is a powerful tool for evaluating and comparing different artificial hand designs

    On Grasp Quality Measures: Grasp Robustness and Contact Force Distribution in Underactuated and Compliant Robotic Hands

    Get PDF
    The availability of grasp quality measures is fundamental for grasp planning and control, and also to drive designers in the definition and optimization of robotic hands. This work investigates on grasp robustness and quality indexes that can be applied to power grasps with underactuated and compliant hands. When dealing with such types of hands, there is the need of an evaluation method that takes into account the forces that can be actually controlled by the hand, depending on its actuation system. In this paper, we study the potential contact robustness and the potential grasp robustness (PCR, PGR) indexes. They both consider main grasp properties: contact points, friction coefficient, etc., but also hand degrees of freedom and consequently, the directions of controllable contact forces. The PCR comes directly from the classical grasp theory and can be easily evaluated, but often leads to too conservative solutions, particularly when the grasp has many contacts. The PGR is more complex and computationally heavier, but gives a more realistic, even if still conservative, estimation of the overall grasp robustness, also in power grasps. We evaluated the indexes for various simulated grasps, performed with underactuated and compliant hands, and we analyzed their variations with respect to the main grasp parameters

    Adaptive Synergies for the Design and Control of the Pisa/IIT SoftHand

    Get PDF
    In this paper we introduce the Pisa/IIT SoftHand, a novel robot hand prototype designed with the purpose of being robust and easy to control as an industrial gripper, while exhibiting high grasping versatility and an aspect similar to that of the human hand. In the paper we briefly review the main theoretical tools used to enable such simplification, i.e. the neuroscience-based notion of soft synergies. A discussion of several possible actuation schemes shows that a straightforward implementation of the soft synergy idea in an effective design is not trivial. The approach proposed in this paper, called adaptive synergy, rests on ideas coming from underactuated hand design. A synthesis method to realize a desired set of soft synergies through the principled design of adaptive synergy is discussed. This approach leads to the design of hands accommodating in principle an arbitrary number of soft synergies, as demonstrated in grasping and manipulation simulations and experiments with a prototype. As a particular instance of application of the synthesis method of adaptive synergies, the Pisa/IIT SoftHand is described in detail. The hand has 19 joints, but only uses 1 actuator to activate its adaptive synergy. Of particular relevance in its design is the very soft and safe, yet powerful and extremely robust structure, obtained through the use of innovative articulations and ligaments replacing conventional joint design. The design and implementation of the prototype hand are shown and its effectiveness demonstrated through grasping experiments, reported also in multimedia extensio
    • …
    corecore