5,240 research outputs found

    Self-energy-functional theory

    Full text link
    Self-energy-functional theory is a formal framework which allows to derive non-perturbative and thermodynamically consistent approximations for lattice models of strongly correlated electrons from a general dynamical variational principle. The construction of the self-energy functional and the corresponding variational principle is developed within the path-integral formalism. Different cluster mean-field approximations, like the variational cluster approximation and cluster extensions of dynamical mean-field theory are derived in this context and their mutual relationship and internal consistency are discussed.Comment: chapter in "Theoretical Methods for Strongly Correlated Systems", edited by A. Avella and F. Mancini, Springer (2011), 38 pages, 10 figure

    Thermodynamics of the BCS-BEC crossover

    Full text link
    We present a self-consistent theory for the thermodynamics of the BCS-BEC crossover in the normal and superfluid phase which is both conserving and gapless. It is based on the variational many-body formalism developed by Luttinger and Ward and by DeDominicis and Martin. Truncating the exact functional for the entropy to that obtained within a ladder approximation, the resulting self-consistent integral equations for the normal and anomalous Green functions are solved numerically for arbitrary coupling. The critical temperature, the equation of state and the entropy are determined as a function of the dimensionless parameter 1/kFa1/k_Fa, which controls the crossover from the BCS-regime of extended pairs to the BEC-regime of tightly bound molecules. The tightly bound pairs turn out to be described by a Popov-type approximation for a dilute, repulsive Bose gas. Even though our approximation does not capture the critical behaviour near the continuous superfluid transition, our results provide a consistent picture for the complete crossover thermodynamics which compare well with recent numerical and field-theoretic approaches at the unitarity point.Comment: published versio

    The Optimal Path of the Chinese Renminbi

    Get PDF
    This paper provides evidence on the consistency of the determination of the Chinese real effective exchange rate (REER) over time. Especially, we validate coin- tegration between the REER and a set of fundamentals using recent developments in model selection. Error correction model (ECM) path dependence in model se- lection is addressed by using the General-To-Specific (GETS) approach enabling us to obtain empirically constant and encompassing ECM. As inference in finite sam- ples is commonly of concern, statistics' distributional properties for cointegration tests are estimated by Monte Carlo simulations. The final specification of the model is compatible with the natural real exchange rate of Stein (1994). We study the implications of our findings in terms of foreign exchange policy.Exchange Rate, Equilibrium value, GETS, Global Imbalances

    The cavity method at zero temperature

    Full text link
    In this note we explain the use of the cavity method directly at zero temperature, in the case of the spin glass on a Bethe lattice. The computation is done explicitly in the formalism equivalent to 'one step replica symmetry breaking'; we compute the energy of the global ground state, as well as the complexity of equilibrium states at a given energy. Full results are presented for a Bethe lattice with connectivity equal to three.Comment: 22 pages, 8 figures; Some minor correction

    Techniques of replica symmetry breaking and the storage problem of the McCulloch-Pitts neuron

    Full text link
    In this article the framework for Parisi's spontaneous replica symmetry breaking is reviewed, and subsequently applied to the example of the statistical mechanical description of the storage properties of a McCulloch-Pitts neuron. The technical details are reviewed extensively, with regard to the wide range of systems where the method may be applied. Parisi's partial differential equation and related differential equations are discussed, and a Green function technique introduced for the calculation of replica averages, the key to determining the averages of physical quantities. The ensuing graph rules involve only tree graphs, as appropriate for a mean-field-like model. The lowest order Ward-Takahashi identity is recovered analytically and is shown to lead to the Goldstone modes in continuous replica symmetry breaking phases. The need for a replica symmetry breaking theory in the storage problem of the neuron has arisen due to the thermodynamical instability of formerly given solutions. Variational forms for the neuron's free energy are derived in terms of the order parameter function x(q), for different prior distribution of synapses. Analytically in the high temperature limit and numerically in generic cases various phases are identified, among them one similar to the Parisi phase in the Sherrington-Kirkpatrick model. Extensive quantities like the error per pattern change slightly with respect to the known unstable solutions, but there is a significant difference in the distribution of non-extensive quantities like the synaptic overlaps and the pattern storage stability parameter. A simulation result is also reviewed and compared to the prediction of the theory.Comment: 103 Latex pages (with REVTeX 3.0), including 15 figures (ps, epsi, eepic), accepted for Physics Report

    Techniques of replica symmetry breaking and the storage problem of the McCulloch-Pitts neuron

    Full text link
    In this article the framework for Parisi's spontaneous replica symmetry breaking is reviewed, and subsequently applied to the example of the statistical mechanical description of the storage properties of a McCulloch-Pitts neuron. The technical details are reviewed extensively, with regard to the wide range of systems where the method may be applied. Parisi's partial differential equation and related differential equations are discussed, and a Green function technique introduced for the calculation of replica averages, the key to determining the averages of physical quantities. The ensuing graph rules involve only tree graphs, as appropriate for a mean-field-like model. The lowest order Ward-Takahashi identity is recovered analytically and is shown to lead to the Goldstone modes in continuous replica symmetry breaking phases. The need for a replica symmetry breaking theory in the storage problem of the neuron has arisen due to the thermodynamical instability of formerly given solutions. Variational forms for the neuron's free energy are derived in terms of the order parameter function x(q), for different prior distribution of synapses. Analytically in the high temperature limit and numerically in generic cases various phases are identified, among them one similar to the Parisi phase in the Sherrington-Kirkpatrick model. Extensive quantities like the error per pattern change slightly with respect to the known unstable solutions, but there is a significant difference in the distribution of non-extensive quantities like the synaptic overlaps and the pattern storage stability parameter. A simulation result is also reviewed and compared to the prediction of the theory.Comment: 103 Latex pages (with REVTeX 3.0), including 15 figures (ps, epsi, eepic), accepted for Physics Report
    corecore