7,286 research outputs found

    Robust Cooperative Manipulation without Force/Torque Measurements: Control Design and Experiments

    Full text link
    This paper presents two novel control methodologies for the cooperative manipulation of an object by N robotic agents. Firstly, we design an adaptive control protocol which employs quaternion feedback for the object orientation to avoid potential representation singularities. Secondly, we propose a control protocol that guarantees predefined transient and steady-state performance for the object trajectory. Both methodologies are decentralized, since the agents calculate their own signals without communicating with each other, as well as robust to external disturbances and model uncertainties. Moreover, we consider that the grasping points are rigid, and avoid the need for force/torque measurements. Load distribution is also included via a grasp matrix pseudo-inverse to account for potential differences in the agents' power capabilities. Finally, simulation and experimental results with two robotic arms verify the theoretical findings

    Nonlinear robust controller design for multi-robot systems with unknown payloads

    Get PDF
    This work is concerned with the control problem of a multi-robot system handling a payload with unknown mass properties. Force constraints at the grasp points are considered. Robust control schemes are proposed that cope with the model uncertainty and achieve asymptotic path tracking. To deal with the force constraints, a strategy for optimally sharing the task is suggested. This strategy basically consists of two steps. The first detects the robots that need help and the second arranges that help. It is shown that the overall system is not only robust to uncertain payload parameters, but also satisfies the force constraints

    Multiple cooperating manipulators: The case of kinematically redundant arms

    Get PDF
    Existing work concerning two or more manipulators simultaneously grasping and transferring a common load is continued and extended. Specifically considered is the case of one or more arms being kinematically redundant. Some existing results in the modeling and control of single redundant arms and multiple manipulators are reviewed. The cooperating situation is modeled in terms of a set of coordinates representing object motion and internal object squeezing. Nominal trajectories in these coordinates are produced via actuator load distribution algorithms introduced previously. A controller is developed to track these desired object trajectories while making use of the kinematic redundancy to additionally aid the cooperation and coordination of the system. It is shown how the existence of kinematic redundancy within the system may be used to enhance the degree of cooperation achievable

    Time Scaling of Cooperative Multi-Robot Trajectories

    Get PDF
    In this paper we develop an algorithm to modify the trajectories of multiple robots in cooperative manipulation. If a given trajectory results in joint torques which exceed the admissible torque range for one or more joints, the algorithm slows down or speeds up the trajectory so as to maintain all the torques within the admissible boundary. Our trajectory modification algorithm uses the concept of time scaling developed by Hollerbach[10] for single robots. A multiple robot system in cooperative manipulation has significantly different dynamics compared to single robot dynamics. As a result, time scaling algorithm for single robots is not usable with multi-robot system. The trajectory scaling schemes described in this paper requires the use of linear programming techniques and is designed to accommodate the internal force constraints and payload distribution strategies. As the multi-robot system is usually redundantly actuated, the actuator torques may be found from the quadratic minimization which has the effect of lowering energy consumption for the trajectory. A scheme for generating a robust multi-robot trajectories when the carried load mass and inertia matrix are unknown but vary within a certain range is also described in this paper. Several examples are given to show the effectiveness of our multi-robot trajectory sealing scheme

    Equilibria, Stability, and Sensitivity for the Aerial Suspended Beam Robotic System subject to Parameter Uncertainty

    Get PDF
    This work studies how parametric uncertainties affect the cooperative manipulation of a cable-suspended beam-shaped load by means of two aerial robots not explicitly communicating with each other. In particular, the work sheds light on the impact of the uncertain knowledge of the model parameters available to an established communication-less force-based controller. First, we find the closed-loop equilibrium configurations in the presence of the aforementioned uncertainties, and then we study their stability. Hence, we show the fundamental role played in the robustness of the load attitude control by the internal force induced in the manipulated object by non-vertical cables. Furthermore, we formally study the sensitivity of the attitude error to such parametric variations, and we provide a method to act on the load position error in the presence of the uncertainties. Eventually, we validate the results through an extensive set of numerical tests in a realistic simulation environment including underactuated aerial vehicles and sagging-prone cables, and through hardware experiments

    Safety-Aware Human-Robot Collaborative Transportation and Manipulation with Multiple MAVs

    Full text link
    Human-robot interaction will play an essential role in various industries and daily tasks, enabling robots to effectively collaborate with humans and reduce their physical workload. Most of the existing approaches for physical human-robot interaction focus on collaboration between a human and a single ground robot. In recent years, very little progress has been made in this research area when considering aerial robots, which offer increased versatility and mobility compared to their grounded counterparts. This paper proposes a novel approach for safe human-robot collaborative transportation and manipulation of a cable-suspended payload with multiple aerial robots. We leverage the proposed method to enable smooth and intuitive interaction between the transported objects and a human worker while considering safety constraints during operations by exploiting the redundancy of the internal transportation system. The key elements of our system are (a) a distributed payload external wrench estimator that does not rely on any force sensor; (b) a 6D admittance controller for human-aerial-robot collaborative transportation and manipulation; (c) a safety-aware controller that exploits the internal system redundancy to guarantee the execution of additional tasks devoted to preserving the human or robot safety without affecting the payload trajectory tracking or quality of interaction. We validate the approach through extensive simulation and real-world experiments. These include as well the robot team assisting the human in transporting and manipulating a load or the human helping the robot team navigate the environment. To the best of our knowledge, this work is the first to create an interactive and safety-aware approach for quadrotor teams that physically collaborate with a human operator during transportation and manipulation tasks.Comment: Guanrui Li and Xinyang Liu contributed equally to this pape
    • …
    corecore