224 research outputs found

    Deep Learning Model With Adaptive Regularization for EEG-Based Emotion Recognition Using Temporal and Frequency Features

    Get PDF
    Since EEG signal acquisition is non-invasive and portable, it is convenient to be used for different applications. Recognizing emotions based on Brain-Computer Interface (BCI) is an important active BCI paradigm for recognizing the inner state of persons. There are extensive studies about emotion recognition, most of which heavily rely on staged complex handcrafted EEG feature extraction and classifier design. In this paper, we propose a hybrid multi-input deep model with convolution neural networks (CNNs) and bidirectional Long Short-term Memory (Bi-LSTM). CNNs extract time-invariant features from raw EEG data, and Bi-LSTM allows long-range lateral interactions between features. First, we propose a novel hybrid multi-input deep learning approach for emotion recognition from raw EEG signals. Second, in the first layers, we use two CNNs with small and large filter sizes to extract temporal and frequency features from each raw EEG epoch of 62-channel 2-s and merge with differential entropy of EEG band. Third, we apply the adaptive regularization method over each parallel CNN’s layer to consider the spatial information of EEG acquisition electrodes. The proposed method is evaluated on two public datasets, SEED and DEAP. Our results show that our technique can significantly improve the accuracy in comparison with the baseline where no adaptive regularization techniques are used

    Multiple Instance Learning for Emotion Recognition using Physiological Signals

    Get PDF
    The problem of continuous emotion recognition has been the subject of several studies. The proposed affective computing approaches employ sequential machine learning algorithms for improving the classification stage, accounting for the time ambiguity of emotional responses. Modeling and predicting the affective state over time is not a trivial problem because continuous data labeling is costly and not always feasible. This is a crucial issue in real-life applications, where data labeling is sparse and possibly captures only the most important events rather than the typical continuous subtle affective changes that occur. In this work, we introduce a framework from the machine learning literature called Multiple Instance Learning, which is able to model time intervals by capturing the presence or absence of relevant states, without the need to label the affective responses continuously (as required by standard sequential learning approaches). This choice offers a viable and natural solution for learning in a weakly supervised setting, taking into account the ambiguity of affective responses. We demonstrate the reliability of the proposed approach in a gold-standard scenario and towards real-world usage by employing an existing dataset (DEAP) and a purposely built one (Consumer). We also outline the advantages of this method with respect to standard supervised machine learning algorithms

    Intelligent Biosignal Analysis Methods

    Get PDF
    This book describes recent efforts in improving intelligent systems for automatic biosignal analysis. It focuses on machine learning and deep learning methods used for classification of different organism states and disorders based on biomedical signals such as EEG, ECG, HRV, and others

    Advancing Pattern Recognition Techniques for Brain-Computer Interfaces: Optimizing Discriminability, Compactness, and Robustness

    Get PDF
    In dieser Dissertation formulieren wir drei zentrale Zielkriterien zur systematischen Weiterentwicklung der Mustererkennung moderner Brain-Computer Interfaces (BCIs). Darauf aufbauend wird ein Rahmenwerk zur Mustererkennung von BCIs entwickelt, das die drei Zielkriterien durch einen neuen Optimierungsalgorithmus vereint. Darüber hinaus zeigen wir die erfolgreiche Umsetzung unseres Ansatzes für zwei innovative BCI Paradigmen, für die es bisher keine etablierte Mustererkennungsmethodik gibt
    • …
    corecore