51 research outputs found

    Intermittent/transient fault phenomena in digital systems

    Get PDF
    An overview of the intermittent/transient (IT) fault study is presented. An interval survivability evaluation of digital systems for IT faults is discussed along with a method for detecting and diagnosing IT faults in digital systems

    (t, k)-diagnosable system: A generalization of the PMC models

    Get PDF
    ln this paper, we introduce a new model for diagnosable systems called (t, k)-diagnosable system which guarantees that at least k faulty units (processors) in a system are detected provided that the number of faulty units does not exceed t. This system includes classical one-step diagnosable systems and sequentially diagnosable systems. We prove a necessary and sufficient condition for (t, k)-diagnosable system, and discuss a lower bound for diagnosability. Finally, we deal with a relation between (t, k)-diagnosability and diagnosability of classical basic models

    Study of diagnosability of binary address decoders

    Get PDF
    This paper studies the diagnosability of various types of binary address decoders. An attempt is made to develop a theory of diagnosis for logical faults that might occur in these logic nets. The developed theory is used to analyze these logic nets for various input combinations. Finally, the derivation of optimum diagnostic test sequences is considered --Abstract, Page i

    Discrete and hybrid methods for the diagnosis of distributed systems

    Get PDF
    Many important activities of modern society rely on the proper functioning of complex systems such as electricity networks, telecommunication networks, manufacturing plants and aircrafts. The supervision of such systems must include strong diagnosis capability to be able to effectively detect the occurrence of faults and ensure appropriate corrective measures can be taken in order to recover from the faults or prevent total failure. This thesis addresses issues in the diagnosis of large complex systems. Such systems are usually distributed in nature, i.e. they consist of many interconnected components each having their own local behaviour. These components interact together to produce an emergent global behaviour that is complex. As those systems increase in complexity and size, their diagnosis becomes increasingly challenging. In the first part of this thesis, a method is proposed for diagnosis on distributed systems that avoids a monolithic global computation. The method, based on converting the graph of the system into a junction tree, takes into account the topology of the system in choosing how to merge local diagnoses on the components while still obtaining a globally consistent result. The method is shown to work well for systems with tree or near-tree structures. This method is further extended to handle systems with high clustering by selectively ignoring some connections that would still allow an accurate diagnosis to be obtained. A hybrid system approach is explored in the second part of the thesis, where continuous dynamics information on the system is also retained to help better isolate or identify faults. A hybrid system framework is presented that models both continuous dynamics and discrete evolution in dynamical systems, based on detecting changes in the fundamental governing dynamics of the system rather than on residual estimation. This makes it possible to handle systems that might not be well characterised and where parameter drift is present. The discrete aspect of the hybrid system model is used to derive diagnosability conditions using indicator functions for the detection and isolation of multiple, arbitrary sequential or simultaneous events in hybrid dynamical networks. Issues with diagnosis in the presence of uncertainty in measurements due sensor or actuator noise are addressed. Faults may generate symptoms that are in the same order of magnitude as the latter. The use of statistical techniques,within a hybrid system framework, is proposed to detect these elusive fault symptoms and translate this information into probabilities for the actual operational mode and possibility of transition between modes which makes it possible to apply probabilistic analysis on the system to handle the underlying uncertainty present

    CONCURRENT DIAGNOSTICS IN MULTIPROCESSOR SYSTEMS

    Get PDF
    The paper presents a survey of diagnostic methods for multiprocessor systems. The diagnostic means known so far are first summarized and evaluated from the point of view of their applicability to systems with distributed control and specifically to the multiprocessor systems. A combination of different diagnostic means is then suggested in order to achieve the maximum diagnostic coverage with minimum overhead

    Fault diagnosis of distributed systems : analysis, simulation and performance measurement.

    Get PDF
    Fault diagnosis forms an essential component in the design of highly reliable distributed computing systems. Early models for diagnosis require a global observer, whereas the diagnosis is shared between the systems nodes in later models. These models are reviewed and their different diagnosability properties reconciled. The design of improved fault diagnosis algorithms for systems without a global observer provides the main motivation for the thesis. The modified algorithm SELF3 [Hoss88] is taken as a starting point. A number of communication architectures used in distributed systems are reviewed. The properties of diagnosis algorithms depend strongly on the testing graph. A general class of testing graphs, designated as H-graphs, (which are a generalization of Dꞩṭ graphs introduced in [Prep67]), are investigated and their diagnostic properties determined. A software simulator for distributed systems has been written as the main investigative tool for diagnosis algorithms. The design and structure of the simulator are described. The diagnosis process is measured in terms of diagnostic time and number of messages produced, and the factors upon which these quantities depend are identified. The results of simulation of a number of systems are given under various fault conditions. A modified way of routing diagnosis messages, which, especially in large system s, results in a reduction in both the number of diagnosis messages and the time required to perform diagnosis, is presented. The thesis also contains a number of specific recommendations for improving existing self-diagnosis algorithms

    Fault Diagnosis Algorithms for Wireless Sensor Networks

    Get PDF
    The sensor nodes in wireless sensor networks (WSNs) are deployed in unattended and hostile environments. The ill-disposed environment affects the monitoring infrastructure that includes the sensor nodes and the links. In addition, node failures and environmental hazards cause frequent topology change, communication failure, and network partition. This in turn adds a new dimension to the fragility of the WSN topology. Such perturbations are far more common in WSNs than those found in conventional wireless networks. These perturbations demand efficient techniques for discovering disruptive behavior in WSNs. Traditional fault diagnosis techniques devised for wired interconnected networks, and conventional wireless networks are not directly applicable to WSNs due to its specific requirements and limitations. System-level diagnosis is a technique to identify faults in distributed networks such as multiprocessor systems, wired interconnected networks, and conventional wireless networks. Recently, this has been applied on ad hoc networks and WSNs. This is performed by deduction, based on information in the form of results of tests applied to the sensor nodes. Neighbor coordination-based system-level diagnosis is a variation of this method, which exploits the spatio-temporal correlation between sensor measurements. In this thesis, we present a new approach to diagnose faulty sensor nodes in a WSN, which works in conjunction with the underlying clustering protocol and exploits spatio-temporal correlation between sensor measurements. An advantage of this method is that the diagnostic operation constitutes real work performed by the system, rather than a specialized diagnostic task. In this way, the normal operation of the network can be used for the diagnosis and resulting less time and message overhead. In this thesis, we have devised and evaluated fault diagnosis algorithms for WSNs considering persistence of the faults (transient, intermittent, and permanent), faults in communication channels and in one of the approaches, we attempt to solve the issue of node mobility in diagnosis. A cluster based distributed fault diagnosis (CDFD) algorithm is proposed where the diagnostic local view is obtained by exploiting the spatially correlated sensor measurements. We derived an optimal threshold for effective fault diagnosis in sparse networks. The message complexity of CDFD is O(n) and the number of bits exchanged to diagnose the network are O(n log2 n). The intermittent fault diagnosis is formulated as a multiobjective optimization problem based on the inter-test interval and number of test repetitions required to diagnose the intermittent faults. The two objectives such as detection latency and energy overhead are taken into consideration with a constraint of detection errors. A high level (> 95%) of detection accuracy is achieved while keeping the false alarm rate low (< 1%) for sparse networks. The proposed cluster based distributed intermittent fault diagnosis (CDIFD) algorithm is energy efficient because in CDIFD, diagnostic messages are sent as the output of the routine tasks of the WSNs. A count and threshold-based mechanism is used to discriminate the persistence of faults. The main characteristics of these faults are the amounts of time the fault disappears. We adopt this state-holding time to discriminate transient from intermittent or permanent faults. The proposed cluster based distributed fault diagnosis and discrimination (CDFDD) algorithm is energy efficient due to the improved network lifetime which is greater than 1150 data-gathering rounds with transient fault rates as high as 20%. A mobility aware hierarchal architecture is proposed which is to detect hard and soft faults in dynamic WSN topology assuming random movements of nodes in the WSN. A test pattern that ensures error checking of each functional block of a sensor node is employed to diagnose the network. The proposed mobility aware cluster based distributed fault diagnosis (MCDFD) algorithm assures a better packet delivery ratio (> 80%) in highly dynamic networks with a fault rate as high as 30%. The network lifetime is more than 900 data-gathering rounds in a highly dynamic network with a fault rate as high as 20%

    GA-Based fault diagnosis algorithms for distributed systems

    Get PDF
    Distributed Systems are becoming very popular day-by-day due to their applications in various fields such as electronic automotives, remote environment control like underwater sensor network, K-connected networks. Faults may aect the nodes of the system at any time. So diagnosing the faulty nodes in the distributed system is an worst necessity to make the system more reliable and ecient. This thesis describes about dierent types of faults, system and fault model, those are already in literature. As the evolutionary approaches give optimum outcome than probabilistic approaches, we have developed Genetic algorithm based fault diagnosis algorithm which provides better result than other fault diagnosis algorithms. The GA-based fault diagnosis algorithm has worked upon dierent types of faults like permanent as well as intermittent faults in a K-connected system. Simulation results demonstrate that the proposed Genetic Algorithm Based Permanent Fault Diagnosis Algorithm(GAPFDA) and Genetic Algorithm Based Intermittent Fault Diagnosis Algorithm (GAIFDA) decreases the number of messages transferred and the time needed to diagnose the faulty nodes in a K-connected distributed system. The decrease in CPU time and number of steps are due to the application of supervised mutation in the fault diagnosis algorithms. The time complexity and message complexity of GAPFDA are analyzed as O(n*P*K*ng) and O(n*K) respectively. The time complexity and message complexity of GAIFDA are O(r*n*P*K*ng) and O(r*n*K) respectively, where ’n’ is the number of nodes, ’P’ is the population size, ’K’ is the connectivity of the network, ’ng’ is the number of generations (steps), ’r’ is the number of rounds. Along with the design of fault diagnosis algorithm of O(r*k) for diagnosing the transient-leading-to-permanent faults in the actuators of a k-fault tolerant Fly-by-wire(FBW) system, an ecient scheduling algorithm has been developed to schedule dierent tasks of a FBW system, here ’r’ denotes the number of rounds. The proposed algorithm for scheduling the task graphs of a multi-rate FBW system demonstrates that, maximization in microcontroller’s execution period reduces the number of microcontrollers needed for performing diagnosis

    Design and Evaluation of Online Fault Diagnosis Protocols forwireless Networks

    Get PDF
    Any node in a network, or a component of it may fail and show undesirable behavior due to physical defects, imperfections, or hardware and/or software related glitches. Presence of faulty hosts in the network affects the computational efficiency, and quality of service (QoS). This calls for the development of efficient fault diagnosis protocols to detect and handle faulty hosts. Fault diagnosis protocols designed for wired networks cannot directly be propagated to wireless networks, due to difference in characteristics, and requirements. This thesis work unravels system level fault diagnosis protocols for wireless networks, particularly for Mobile ad hoc Networks (MANETs), and Wireless Sensor Networks (WSNs), considering faults based on their persistence (permanent, intermittent, and transient), and node mobility. Based on the comparisons of outcomes of the same tasks (comparison model ), a distributed diagnosis protocol has been proposed for static topology MANETs, where a node requires to respond to only one test request from its neighbors, that reduces the communication complexity of the diagnosis process. A novel approach to handle more intractable intermittent faults in dynamic topology MANETs is also discussed.Based on the spatial correlation of sensor measurements, a distributed fault diagnosis protocol is developed to classify the nodes to be fault-free, permanently faulty, or intermittently faulty, in WSNs. The nodes affected by transient faults are often considered fault-free, and should not be isolated from the network. Keeping this objective in mind, we have developed a diagnosis algorithm for WSNs to discriminate transient faults from intermittent and permanent faults. After each node finds the status of all 1-hop neighbors (local diagnostic view), these views are disseminated among the fault-free nodes to deduce the fault status of all nodes in the network (global diagnostic view). A spanning tree based dissemination strategy is adopted, instead of conventional flooding, to have less communication complexity. Analytically, the proposed protocols are shown to be correct, and complete. The protocols are implemented using INET-20111118 (for MANETs) and Castalia-3.2 (forWSNs) on OMNeT++ 4.2 platform. The obtained simulation results for accuracy and false alarm rate vouch the feasibility and efficiency of the proposed algorithms over existing landmark protocols
    corecore