133 research outputs found

    Bistability in the Complex Ginzburg-Landau Equation with Drift

    Get PDF
    Properties of the complex Ginzburg-Landau equation with drift are studied focusing on the Benjamin-Feir stable regime. On a finite interval with Neumann boundary conditions the equation exhibits bistability between a spatially uniform time-periodic state and a variety of nonuniform states with complex time dependence. The origin of this behavior is identified and contrasted with the bistable behavior present with periodic boundary conditions and no drift

    Bifurcations, Chaos, Controlling and Synchronization of Certain Nonlinear Oscillators

    Get PDF
    In this set of lectures, we review briefly some of the recent developments in the study of the chaotic dynamics of nonlinear oscillators, particularly of damped and driven type. By taking a representative set of examples such as the Duffing, Bonhoeffer-van der Pol and MLC circuit oscillators, we briefly explain the various bifurcations and chaos phenomena associated with these systems. We use numerical and analytical as well as analogue simulation methods to study these systems. Then we point out how controlling of chaotic motions can be effected by algorithmic procedures requiring minimal perturbations. Finally we briefly discuss how synchronization of identically evolving chaotic systems can be achieved and how they can be used in secure communications.Comment: 31 pages (24 figures) LaTeX. To appear Springer Lecture Notes in Physics Please Lakshmanan for figures (e-mail: [email protected]

    Thermosolutal and binary fluid convection as a 2 x 2 matrix problem

    Full text link
    We describe an interpretation of convection in binary fluid mixtures as a superposition of thermal and solutal problems, with coupling due to advection and proportional to the separation parameter S. Many properties of binary fluid convection are then consequences of generic properties of 2 x 2 matrices. The eigenvalues of 2 x 2 matrices varying continuously with a parameter r undergo either avoided crossing or complex coalescence, depending on the sign of the coupling (product of off-diagonal terms). We first consider the matrix governing the stability of the conductive state. When the thermal and solutal gradients act in concert (S>0, avoided crossing), the growth rates of perturbations remain real and of either thermal or solutal type. In contrast, when the thermal and solutal gradients are of opposite signs (S<0, complex coalescence), the growth rates become complex and are of mixed type. Surprisingly, the kinetic energy of nonlinear steady states is governed by an eigenvalue problem very similar to that governing the growth rates. There is a quantitative analogy between the growth rates of the linear stability problem for infinite Prandtl number and the amplitudes of steady states of the minimal five-variable Veronis model for arbitrary Prandtl number. For positive S, avoided crossing leads to a distinction between low-amplitude solutal and high-amplitude thermal regimes. For negative S, the transition between real and complex eigenvalues leads to the creation of branches of finite amplitude, i.e. to saddle-node bifurcations. The codimension-two point at which the saddle-node bifurcations disappear, separating subcritical from supercritical pitchfork bifurcations, is exactly analogous to the Bogdanov codimension-two point at which the Hopf bifurcations disappear in the linear problem

    A Codimension-2 Bifurcation Controlling Endogenous Bursting Activity and Pulse-Triggered Responses of a Neuron Model

    Get PDF
    The dynamics of individual neurons are crucial for producing functional activity in neuronal networks. An open question is how temporal characteristics can be controlled in bursting activity and in transient neuronal responses to synaptic input. Bifurcation theory provides a framework to discover generic mechanisms addressing this question. We present a family of mechanisms organized around a global codimension-2 bifurcation. The cornerstone bifurcation is located at the intersection of the border between bursting and spiking and the border between bursting and silence. These borders correspond to the blue sky catastrophe bifurcation and the saddle-node bifurcation on an invariant circle (SNIC) curves, respectively. The cornerstone bifurcation satisfies the conditions for both the blue sky catastrophe and SNIC. The burst duration and interburst interval increase as the inverse of the square root of the difference between the corresponding bifurcation parameter and its bifurcation value. For a given set of burst duration and interburst interval, one can find the parameter values supporting these temporal characteristics. The cornerstone bifurcation also determines the responses of silent and spiking neurons. In a silent neuron with parameters close to the SNIC, a pulse of current triggers a single burst. In a spiking neuron with parameters close to the blue sky catastrophe, a pulse of current temporarily silences the neuron. These responses are stereotypical: the durations of the transient intervals–the duration of the burst and the duration of latency to spiking–are governed by the inverse-square-root laws. The mechanisms described here could be used to coordinate neuromuscular control in central pattern generators. As proof of principle, we construct small networks that control metachronal-wave motor pattern exhibited in locomotion. This pattern is determined by the phase relations of bursting neurons in a simple central pattern generator modeled by a chain of oscillators

    GEOFLOW: simulation of convection in a spherical shell under central force field

    Get PDF
    Time-dependent dynamical simulations related to convective motion in a spherical gap under a central force field due to the dielectrophoretic effect are discussed. This work is part of the preparation of the GEOFLOW-experiment which is planned to run in a microgravity environment. The goal of this experiment is the simulation of large-scale convective motion in a geophysical or astrophysical framework. This problem is new because of, on the one hand, the nature of the force field (dielectrophoretic effect) and, on another hand, the high degree of symmetries of the system, e.g. the top-bottom reflection. Thus, the validation of this simulation with well-known results is not possible. The questions concerning the influence of the dielectrophoretic force and the possibility to reproduce the theoretically expected motions in the astrophysical framework, are open. In the first part, we study the system in terrestrial conditions: the unidirectional Earth&apos;s force is superimposed on the central dielectrophoretic force field to compare with the laboratory experiments during the development of the equipment. In the second part, the GEOFLOW-experiment simulations in weightless conditions are compared with theoretical studies in the astrophysical framework&apos;s, in the first instance a fluid under a self-gravitating force field. We present complex time-dependent dynamics, where the dielectrophoretic force field causes significant differences in the flow compared to the case that does not involve this force field

    Nonlinear dynamics of a solid-state laser with injection

    Full text link
    We analyze the dynamics of a solid-state laser driven by an injected sinusoidal field. For this type of laser, the cavity round-trip time is much shorter than its fluorescence time, yielding a dimensionless ratio of time scales σ1\sigma \ll 1. Analytical criteria are derived for the existence, stability, and bifurcations of phase-locked states. We find three distinct unlocking mechanisms. First, if the dimensionless detuning Δ\Delta and injection strength kk are small in the sense that k=O(Δ)σ1/2k = O(\Delta) \ll \sigma^{1/2}, unlocking occurs by a saddle-node infinite-period bifurcation. This is the classic unlocking mechanism governed by the Adler equation: after unlocking occurs, the phases of the drive and the laser drift apart monotonically. The second mechanism occurs if the detuning and the drive strength are large: k=O(Δ)σ1/2k =O(\Delta) \gg \sigma^{1/2}. In this regime, unlocking is caused instead by a supercritical Hopf bifurcation, leading first to phase trapping and only then to phase drift as the drive is decreased. The third and most interesting mechanism occurs in the distinguished intermediate regime k,Δ=O(σ1/2)k, \Delta = O(\sigma^{1/2}). Here the system exhibits complicated, but nonchaotic, behavior. Furthermore, as the drive decreases below the unlocking threshold, numerical simulations predict a novel self-similar sequence of bifurcations whose details are not yet understood.Comment: 29 pages in revtex + 8 figs in eps. To appear in Phys. Rev. E (scheduled tentatively for the issue of 1 Oct 98
    corecore