82 research outputs found

    Intermediate templates guided groupwise registration of diffusion tensor images

    Get PDF
    Registration of a population of diffusion tensor images (DTIs) is one of the key steps in medical image analysis, and it plays an important role in the statistical analysis of white matter related neurological diseases. However, pairwise registration with respect to a pre-selected template may not give precise results if the selected template deviates significantly from the distribution of images. To cater for more accurate and consistent registration, a novel framework is proposed for groupwise registration with the guidance from one or more intermediate templates determined from the population of images. Specifically, we first use a Euclidean distance, defined as a combinative measure based on the FA map and ADC map, for gauging the similarity of each pair of DTIs. A fully connected graph is then built with each node denoting an image and each edge denoting the distance between a pair of images. The root template image is determined automatically as the image with the overall shortest path length to all other images on the minimum spanning tree (MST) of the graph. Finally, a sequence of registration steps is applied to progressively warping each image towards the root template image with the help of intermediate templates distributed along its path to the root node on the MST. Extensive experimental results using diffusion tensor images of real subjects indicate that registration accuracy and fiber tract alignment are significantly improved, compared with the direct registration from each image to the root template image

    PopTract: Population-Based Tractography

    Get PDF
    White matter fiber tractography plays a key role in the in vivo understanding of brain circuitry. For tract-based comparison of a population of images, a common approach is to first generate an atlas by averaging, after spatial normalization, all images in the population, and then perform tractography using the constructed atlas. The reconstructed fiber trajectories form a common geometry onto which diffusion properties of each individual subject can be projected based on the corresponding locations in the subject native space. However, in the case of high angular resolution diffusion imaging (HARDI), where modeling fiber crossings is an important goal, the above-mentioned averaging method for generating an atlas results in significant error in the estimation of local fiber orientations and causes a major loss of fiber crossings. These limitatitons have significant impact on the accuracy of the reconstructed fiber trajectories and jeopardize subsequent tract-based analysis. As a remedy, we present in this paper a more effective means of performing tractography at a population level. Our method entails determining a bipolar Watson distribution at each voxel location based on information given by all images in the population, giving us not only the local principal orientations of the fiber pathways, but also confidence levels of how reliable these orientations are across subjects. The distribution field is then fed as an input to a probabilistic tractography framework for reconstructing a set of fiber trajectories that are consistent across all images in the population. We observe that the proposed method, called PopTract, results in significantly better preservation of fiber crossings, and hence yields better trajectory reconstruction in the atlas space

    Hierarchical unbiased graph shrinkage (HUGS): A novel groupwise registration for large data set

    Get PDF
    Normalizing all images in a large data set into a common space is a key step in many clinical and research studies, e.g., for brain development, maturation, and aging. Recently, groupwise registration has been developed for simultaneous alignment of all images without selecting a particular image as template, thus potentially avoiding bias in the registration. However, most conventional groupwise registration methods do not explore the data distribution during the image registration. Thus, their performance could be affected by large inter-subject variations in the data set under registration. To solve this potential issue, we propose to use a graph to model the distribution of all image data sitting on the image manifold, with each node representing an image and each edge representing the geodesic pathway between two nodes (or images). Then, the procedure of warping all images to their population center turns to the dynamic shrinking of the graph nodes along their graph edges until all graph nodes become close to each other. Thus, the topology of image distribution on the image manifold is always preserved during the groupwise registration. More importantly, by modeling the distribution of all images via a graph, we can potentially reduce registration error since every time each image is warped only according to its nearby images with similar structures in the graph. We have evaluated our proposed groupwise registration method on both infant and adult data sets, by also comparing with the conventional group-mean based registration and the ABSORB methods. All experimental results show that our proposed method can achieve better performance in terms of registration accuracy and robustness

    Groupwise registration with global-local graph shrinkage in atlas construction

    Get PDF
    Graph-based groupwise registration methods are widely used in atlas construction. Given a group of images, a graph is built whose nodes represent the images, and whose edges represent a geodesic path between two nodes. The distribution of images on an image manifold is explored through edge traversal in a graph. The final atlas is a mean image at the population center of the distribution on the manifold. The procedure of warping all images to the mean image turns to dynamic graph shrinkage in which nodes become closer to each other. Most conventional groupwise registration frameworks construct and shrink a graph without considering the local distribution of images on the dataset manifold and the local structure variations between image pairs. Neglecting the local information fundamentally decrease the accuracy and efficiency when population atlases are built for organs with large inter-subject anatomical variabilities. To overcome the problem, this paper proposes a global-local graph shrinkage approach that can generate accurate atlas. A connected graph is constructed automatically based on global similarities across the images to explore the global distribution. A local image distribution obtained by image clustering is used to simplify the edges of the constructed graph. Subsequently, local image similarities refine the deformation estimated through global image similarity for each image warping along the graph edges. Through the image warping, the overall simplified graph shrinks gradually to yield the atlas with respecting both global and local features. The proposed method is evaluated on 61 synthetic and 20 clinical liver datasets, and the results are compared with those of six state-of-the-art groupwise registration methods. The experimental results show that the proposed method outperforms non-global-local method approaches in terms of accuracy

    Neonatal atlas construction using sparse representation: Neonatal Atlas Construction

    Get PDF
    Atlas construction generally includes first an image registration step to normalize all images into a common space and then an atlas building step to fuse the information from all the aligned images. Although numerous atlas construction studies have been performed to improve the accuracy of the image registration step, unweighted or simply weighted average is often used in the atlas building step. In this article, we propose a novel patch-based sparse representation method for atlas construction after all images have been registered into the common space. By taking advantage of local sparse representation, more anatomical details can be recovered in the built atlas. To make the anatomical structures spatially smooth in the atlas, the anatomical feature constraints on group structure of representations and also the overlapping of neighboring patches are imposed to ensure the anatomical consistency between neighboring patches. The proposed method has been applied to 73 neonatal MR images with poor spatial resolution and low tissue contrast, for constructing a neonatal brain atlas with sharp anatomical details. Experimental results demonstrate that the proposed method can significantly enhance the quality of the constructed atlas by discovering more anatomical details especially in the highly convoluted cortical regions. The resulting atlas demonstrates superior performance of our atlas when applied to spatially normalizing three different neonatal datasets, compared with other start-of-the-art neonatal brain atlases

    Registration of 3D Point Clouds and Meshes: A Survey From Rigid to Non-Rigid

    Get PDF
    Three-dimensional surface registration transforms multiple three-dimensional data sets into the same coordinate system so as to align overlapping components of these sets. Recent surveys have covered different aspects of either rigid or nonrigid registration, but seldom discuss them as a whole. Our study serves two purposes: 1) To give a comprehensive survey of both types of registration, focusing on three-dimensional point clouds and meshes and 2) to provide a better understanding of registration from the perspective of data fitting. Registration is closely related to data fitting in which it comprises three core interwoven components: model selection, correspondences and constraints, and optimization. Study of these components 1) provides a basis for comparison of the novelties of different techniques, 2) reveals the similarity of rigid and nonrigid registration in terms of problem representations, and 3) shows how overfitting arises in nonrigid registration and the reasons for increasing interest in intrinsic techniques. We further summarize some practical issues of registration which include initializations and evaluations, and discuss some of our own observations, insights and foreseeable research trends

    Advances in Groupwise Image Registration

    Get PDF

    Advances in Groupwise Image Registration

    Get PDF

    Effect of perinatal adversity on structural connectivity of the developing brain

    Get PDF
    Globally, preterm birth (defined as birth at <37 weeks of gestation) affects around 11% of deliveries and it is closely associated with cerebral palsy, cognitive impairments and neuropsychiatric diseases in later life. Magnetic Resonance Imaging (MRI) has utility for measuring different properties of the brain during the lifespan. Specially, diffusion MRI has been used in the neonatal period to quantify the effect of preterm birth on white matter structure, which enables inference about brain development and injury. By combining information from both structural and diffusion MRI, is it possible to calculate structural connectivity of the brain. This involves calculating a model of the brain as a network to extract features of interest. The process starts by defining a series of nodes (anatomical regions) and edges (connections between two anatomical regions). Once the network is created, different types of analysis can be performed to find features of interest, thereby allowing group wise comparisons. The main frameworks/tools designed to construct the brain connectome have been developed and tested in the adult human brain. There are several differences between the adult and the neonatal brain: marked variation in head size and shape, maturational processes leading to changes in signal intensity profiles, relatively lower spatial resolution, and lower contrast between tissue classes in the T1 weighted image. All of these issues make the standard processes to construct the brain connectome very challenging to apply in the neonatal population. Several groups have studied the neonatal structural connectivity proposing several alternatives to overcome these limitations. The aim of this thesis was to optimise the different steps involved in connectome analysis for neonatal data. First, to provide accurate parcellation of the cortex a new atlas was created based on a control population of term infants; this was achieved by propagating the atlas from an adult atlas through intermediate childhood spatio-temporal atlases using image registration. After this the advanced anatomically-constrained tractography framework was adapted for the neonatal population, refined using software tools for skull-stripping, tissue segmentation and parcellation specially designed and tested for the neonatal brain. Finally, the method was used to test the effect of early nutrition, specifically breast milk exposure, on structural connectivity in preterm infants. We found that infants with higher exposure to breastmilk in the weeks after preterm birth had improved structural connectivity of developing networks and greater fractional anisotropy in major white matter fasciculi. These data also show that the benefits are dose dependent with higher exposure correlating with increased white matter connectivity. In conclusion, structural connectivity is a robust method to investigate the developing human brain. We propose an optimised framework for the neonatal brain, designed for our data and using tools developed for the neonatal brain, and apply it to test the effect of breastmilk exposure on preterm infants
    • …
    corecore