9,226 research outputs found

    Fractal Weyl laws in discrete models of chaotic scattering

    Get PDF
    We analyze simple models of quantum chaotic scattering, namely quantized open baker's maps. We numerically compute the density of quantum resonances in the semiclassical r\'{e}gime. This density satisfies a fractal Weyl law, where the exponent is governed by the (fractal) dimension of the set of trapped trajectories. This type of behaviour is also expected in the (physically more relevant) case of Hamiltonian chaotic scattering. Within a simplified model, we are able to rigorously prove this Weyl law, and compute quantities related to the "coherent transport" through the system, namely the conductance and "shot noise". The latter is close to the prediction of random matrix theory.Comment: Invited article in the Special Issue of Journal of Physics A on "Trends in Quantum Chaotic Scattering

    Even/odd decomposition made sparse: A fingerprint to hidden patterns

    Get PDF
    The very fundamental operation of even/odd decomposition is at the core of some of the simplest information representation and signal processing tasks. So far most of its use has been for rearranging data to provide fast implementations of various types of transforms (Fourier, DCT, …) or for achieving elementary data transformation, such as the Walsh–Hadamard transform. This work proposes to look into the decomposition framework to obtain a richer perspective. In the context of an iterated even/odd decomposition, it is possible to pinpoint intermediate layered levels of symmetries which cannot be easily captured in the original data. In addition this determines a hierarchical fingerprinting for any sort of continuous finite support analog signal or for any discrete-time sequence which may turn out useful in several recognition or categorization tasks. It also may help to achieve sparsity within a natural hierarchical framework, which could be easily extended for many other types of orthogonal transformations. This paper also suggests a global measure of the energy imbalance across the hierarchy of the decomposition to capture the overall fingerprinting of this interpretation

    Distribution of resonances for open quantum maps

    Get PDF
    We analyze simple models of classical chaotic open systems and of their quantizations (open quantum maps on the torus). Our models are similar to models recently studied in atomic and mesoscopic physics. They provide a numerical confirmation of the fractal Weyl law for the density of quantum resonances of such systems. The exponent in that law is related to the dimension of the classical repeller (or trapped set) of the system. In a simplified model, a rigorous argument gives the full resonance spectrum, which satisfies the fractal Weyl law. For this model, we can also compute a quantity characterizing the fluctuations of conductance through the system, namely the shot noise power: the value we obtain is close to the prediction of random matrix theory.Comment: 60 pages, no figures (numerical results are shown in other references

    Interacting Turing-Hopf Instabilities Drive Symmetry-Breaking Transitions in a Mean-Field Model of the Cortex: A Mechanism for the Slow Oscillation

    Get PDF
    Electrical recordings of brain activity during the transition from wake to anesthetic coma show temporal and spectral alterations that are correlated with gross changes in the underlying brain state. Entry into anesthetic unconsciousness is signposted by the emergence of large, slow oscillations of electrical activity (≲1  Hz) similar to the slow waves observed in natural sleep. Here we present a two-dimensional mean-field model of the cortex in which slow spatiotemporal oscillations arise spontaneously through a Turing (spatial) symmetry-breaking bifurcation that is modulated by a Hopf (temporal) instability. In our model, populations of neurons are densely interlinked by chemical synapses, and by interneuronal gap junctions represented as an inhibitory diffusive coupling. To demonstrate cortical behavior over a wide range of distinct brain states, we explore model dynamics in the vicinity of a general-anesthetic-induced transition from “wake” to “coma.” In this region, the system is poised at a codimension-2 point where competing Turing and Hopf instabilities coexist. We model anesthesia as a moderate reduction in inhibitory diffusion, paired with an increase in inhibitory postsynaptic response, producing a coma state that is characterized by emergent low-frequency oscillations whose dynamics is chaotic in time and space. The effect of long-range axonal white-matter connectivity is probed with the inclusion of a single idealized point-to-point connection. We find that the additional excitation from the long-range connection can provoke seizurelike bursts of cortical activity when inhibitory diffusion is weak, but has little impact on an active cortex. Our proposed dynamic mechanism for the origin of anesthetic slow waves complements—and contrasts with—conventional explanations that require cyclic modulation of ion-channel conductances. We postulate that a similar bifurcation mechanism might underpin the slow waves of natural sleep and comment on the possible consequences of chaotic dynamics for memory processing and learning

    Synthetic Aperture Radar (SAR) data processing

    Get PDF
    The available and optimal methods for generating SAR imagery for NASA applications were identified. The SAR image quality and data processing requirements associated with these applications were studied. Mathematical operations and algorithms required to process sensor data into SAR imagery were defined. The architecture of SAR image formation processors was discussed, and technology necessary to implement the SAR data processors used in both general purpose and dedicated imaging systems was addressed

    Designometry – Formalization of Artifacts and Methods

    Get PDF
    Two interconnected surveys are presented, one of artifacts and one of designometry. Artifacts are objects, which have an originator and do not exist in nature. Designometry is a new field of study, which aims to identify the originators of artifacts. The space of artifacts is described and also domains, which pursue designometry, yet currently doing so without collaboration or common methodologies. On this basis, synergies as well as a generic axiom and heuristics for the quest of the creators of artifacts are introduced. While designometry has various areas of applications, the research of methods to detect originators of artificial minds, which constitute a subgroup of artifacts, can be seen as particularly relevant and, in the case of malevolent artificial minds, as contribution to AI safety

    Nat Prod Rep

    Get PDF
    This review provides a summary of recent research advances in elucidating the biosynthesis of fungal indole alkaloids. The different strategies used to incorporate and derivatize the indole/indoline moieties in various families of fungal indole alkaloids will be discussed, including tryptophan-containing nonribosomal peptides, polyketide-nonribosomal peptide hybrids, and alkaloids derived from other indole building blocks. This review also includes a discussion regarding the downstream modifications that generate chemical and structural diversity among indole alkaloids.1DP1GM106413/DP/NCCDPHP CDC HHS/United States1R56AI101141/AI/NIAID NIH HHS/United StatesDP1 GM106413/GM/NIGMS NIH HHS/United StatesR56 AI101141/AI/NIAID NIH HHS/United States2015-10-01T00:00:00Z25180619PMC416282
    corecore