742 research outputs found

    A QoS-Driven ISP Selection Mechanism for IPv6 Multi-homed Sites

    Get PDF
    A global solution for the provision of QoS in IPng sites must include ISP selection based on per-application requirements. In this article we present a new site-local architecture for QoS-driven ISP selection in multi-homed domains, performed in a per application basis. This architecture proposes the novel use of existent network services, a new type of routing header, and the modification of address selection mechanisms to take into account QoS requirements. This proposal is an evolution of current technology, and therefore precludes the addition of new protocols, enabling fast deployment. The sitelocal scope of the proposed solution results in ISP transparency and thus in ISP independency.This research was supported by the LONG (Laboratories Over the Next Generation Networks) project IST-1999-20393.Publicad

    HoPP: Robust and Resilient Publish-Subscribe for an Information-Centric Internet of Things

    Full text link
    This paper revisits NDN deployment in the IoT with a special focus on the interaction of sensors and actuators. Such scenarios require high responsiveness and limited control state at the constrained nodes. We argue that the NDN request-response pattern which prevents data push is vital for IoT networks. We contribute HoP-and-Pull (HoPP), a robust publish-subscribe scheme for typical IoT scenarios that targets IoT networks consisting of hundreds of resource constrained devices at intermittent connectivity. Our approach limits the FIB tables to a minimum and naturally supports mobility, temporary network partitioning, data aggregation and near real-time reactivity. We experimentally evaluate the protocol in a real-world deployment using the IoT-Lab testbed with varying numbers of constrained devices, each wirelessly interconnected via IEEE 802.15.4 LowPANs. Implementations are built on CCN-lite with RIOT and support experiments using various single- and multi-hop scenarios

    A Highly-Available Multiple Region Multi-access Edge Computing Platform with Traffic Failover

    Get PDF
    One of the main challenges in the Multi-access Edge Computing (MEC) is steering traffic from clients to the nearest MEC instances. If the nearest MEC fails, a failover mechanism should provide mitigation by steering the traffic to the next nearest MEC. There are two conventional approaches to solve this problem, i.e., GeoDNS and Internet Protocol (IP) anycast. GeoDNS is not failover friendly because of the Domain Name System (DNS) cache lifetime. Moreover, the use of a recursive resolver may inaccurately translate the IP address to its geolocation. Thus, this thesis studies and proposes a highly available MEC platform leveraging IP anycast. We built a proof-of-concept using Kubernetes, MetalLB, and a custom health-checker running on the GNS3 network emulator. We measured latency, failure percentage, and Mean Time To Repair (MTTR) to observe the system's behavior. The performance evaluation of the proposed solution shows an average recovery time better than one second. The number of failed requests and latency overhead grows linearly as the failover time and latency between two MECs increases. This thesis demonstrates the effectiveness of IP anycast for MEC applications to steer the traffic to the nearest MEC instance and to enhance resiliency with minor overhead

    Betrayed by the Guardian: Security and Privacy Risks of Parental Control Solutions

    Full text link
    For parents of young children and adolescents, the digital age has introduced many new challenges, including excessive screen time, inappropriate online content, cyber predators, and cyberbullying. To address these challenges, many parents rely on numerous parental control solutions on different platforms, including parental control network devices (e.g., WiFi routers) and software applications on mobile devices and laptops. While these parental control solutions may help digital parenting, they may also introduce serious security and privacy risks to children and parents, due to their elevated privileges and having access to a significant amount of privacy-sensitive data. In this paper, we present an experimental framework for systematically evaluating security and privacy issues in parental control software and hardware solutions. Using the developed framework, we provide the first comprehensive study of parental control tools on multiple platforms including network devices, Windows applications, Chrome extensions and Android apps. Our analysis uncovers pervasive security and privacy issues that can lead to leakage of private information, and/or allow an adversary to fully control the parental control solution, and thereby may directly aid cyberbullying and cyber predators

    Link State Contract Routing

    Get PDF
    The Internet's simple design resulted in huge success in basic telecommunicationservices. However, the current Internet architecture has failed in terms of introducingmany innovative technologies as end-to-end (E2E) services such as multicasting,guaranteed quality of services (QoS) and many others. We argue that contractingover static service level agreements (SLA) and point-to-anywhere service definitionsare the main reasons behind this failure. In that sense, the Internet architecture needsmajor shifts since it neither allows (i) users to indicate their value choices at sufficientgranularity nor (ii) providers to manage risks involved in investment for new innovativeQoS technologies and business relationships with other providers as well as users.To allow these much needed economic flexibilities, we introduce contract-switching asa new paradigm for the design of future Internet architecture. In this work, we implementcontract-routing framework with specific focus on long-term contracted servicesin Link State Contract Routing scheme. Our work shows that E2e guaranteed QoSservices can be achieved in routing over contracted edge-to-edge service abstractionswhich are built on today's popular protocols with reasonable protocol overhead
    corecore