324 research outputs found

    Computational design of steady 3D dissection puzzles

    Get PDF
    Dissection puzzles require assembling a common set of pieces into multiple distinct forms. Existing works focus on creating 2D dissection puzzles that form primitive or naturalistic shapes. Unlike 2D dissection puzzles that could be supported on a tabletop surface, 3D dissection puzzles are preferable to be steady by themselves for each assembly form. In this work, we aim at computationally designing steady 3D dissection puzzles. We address this challenging problem with three key contributions. First, we take two voxelized shapes as inputs and dissect them into a common set of puzzle pieces, during which we allow slightly modifying the input shapes, preferably on their internal volume, to preserve the external appearance. Second, we formulate a formal model of generalized interlocking for connecting pieces into a steady assembly using both their geometric arrangements and friction. Third, we modify the geometry of each dissected puzzle piece based on the formal model such that each assembly form is steady accordingly. We demonstrate the effectiveness of our approach on a wide variety of shapes, compare it with the state-of-the-art on 2D and 3D examples, and fabricate some of our designed puzzles to validate their steadiness

    Screwing assembly oriented interactive model segmentation in HMD VR environment

    Get PDF
    © 2019 John Wiley & Sons, Ltd. Although different approaches of segmenting and assembling geometric models for 3D printing have been proposed, it is difficult to find any research studies, which investigate model segmentation and assembly in head-mounted display (HMD) virtual reality (VR) environments for 3D printing. In this work, we propose a novel and interactive segmentation method for screwing assembly in the environments to tackle this problem. Our approach divides a large model into semantic parts with a screwing interface for repeated tight assembly. Specifically, after a user places the cutting interface, our algorithm computes the bounding box of the current part automatically for subsequent multicomponent semantic Boolean segmentations. Afterwards, the bolt is positioned with an improved K3M image thinning algorithm and is used for merging paired components with union and subtraction Boolean operations respectively. Moreover, we introduce a swept Boolean-based rotation collision detection and location method to guarantee a collision-free screwing assembly. Experiments show that our approach provides a new interactive multicomponent semantic segmentation tool that supports not only repeated installation and disassembly but also tight and aligned assembly

    Digital Material Assembly by Passive Means and Modular Isotropic Lattice Extruder System

    Get PDF
    A set of machines and related systems build structures by the additive assembly of discrete parts. These digital material assemblies constrain the constituent parts to a discrete set of possible positions and orientations. In doing so, the structures exhibit many of the properties inherent in digital communication such as error correction, fault tolerance and allow the assembly of precise structures with comparatively imprecise tools. Assembly of discrete cellular lattices by a Modular Isotropic Lattice Extruder System (MILES) is implemented by pulling strings of lattice elements through a forming die that enforces geometry constraints that lock the elements into a rigid structure that can then be pushed against and extruded out of the die as an assembled, loadbearing structure

    Digital materials

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 43-44).This thesis develops the use of additive assembly of press-fit digital materials as a new rapid-prototyping process. Digital materials consist of a finite set of parts that have discrete connections and occupy discrete space. Part geometries were designed and fabricated at different scales from different materials, including hierarchical voxels which connect across different scales. All parts were designed to be vertically assembled with top and bottom connections. Digital materials are discussed as a new way for building physically reconfigurable, multi-material 3D structures. The parts were designed with press-fit connectors to build reversible assemblies to take full advantage of reuse and recycling. This document starts by describing some current technologies in the fields of rapid-prototyping and personal fabrication. The concept for a press-fit digital materials is defined and explained. Many part designs are documented, including conductor and insulator parts for SOIC-pitch 3D circuits and hierarchical assemblies. This thesis concludes with the design and concept for assembly machine to automate building functional digital materials.by Jonathan Ward.S.M

    Boxelization: folding 3D objects into boxes

    Get PDF
    We present a method for transforming a 3D object into a cube or a box using a continuous folding sequence. Our method produces a single, connected object that can be physically fabricated and folded from one shape to the other. We segment the object into voxels and search for a voxel-tree that can fold from the input shape to the target shape. This involves three major steps: finding a good voxelization, finding the tree structure that can form the input and target shapes' configurations, and finding a non-intersecting folding sequence. We demonstrate our results on several input 3D objects and also physically fabricate some using a 3D printer

    Kinematic behavior of sheared sand with emphasis on particle to particle interaction using computed tomography

    Get PDF
    Granular materials are a three-phase mixture of solid, liquid, and gas that exhibit complex engineering properties. They have a heterogeneous composition in nature and consist of many discrete particles with complex interactions. Granular materials are commonly used in many civil engineering construction projects, therefore, a better understanding of behavior of granular materials may result in safe and economical design. This thesis is a compilation of two related topics. A 3D systematic experimental study that investigates the influence of particle morphology, confining pressure, and specimen density on the failure mode of sheared sand is presented. Three uniform sand specimens with different morphologies as well as spherical glass beads were tested under axisymmetric triaxial loading. The deformation of the tested specimens was monitored using in-situ 3D Synchrotron Microtomography (SMT), and maps of incremental particle translation and rotation were developed. The results of the analysis shows that the angularity of particles is the major player in the failure mode of the sheared sand under high confining pressure, where specimens fails either via a single well-defined shear band or via a bulging mode. Dense specimens tested under low confining pressure, as well as loose specimen exhibited a preference to fail via bulging in the middle of the specimens. The second part of the Thesis presents an experimental validation of the finite strain formulations that were developed by Zhang and Regueiro (2015) using 3D images of sheared F35 Ottawa sand specimens. The spatial maps of Eulerian octahedral shear strain were used to identify intensive shearing zones within the specimens, and compared well with maps of incremental particle translation and rotation for the same specimens. The local Eulerian volumetric strain was compared to the global measurements, which also can be considered v as an averaging of all local Eulerian volumetric strains. Void ratio evolution curves generally compared well with the volumetric strains at both the local and global level

    Interlocking structure design and assembly

    Get PDF
    Many objects in our life are not manufactured as whole rigid pieces. Instead, smaller components are made to be later assembled into larger structures. Chairs are assembled from wooden pieces, cabins are made of logs, and buildings are constructed from bricks. These components are commonly designed by many iterations of human thinking. In this report, we will look at a few problems related to interlocking components design and assembly. Given an atomic object, how can we design a package that holds the object firmly without a gap in-between? How many pieces should the package be partitioned into? How can we assemble/extract each piece? We will attack this problem by first looking at the lower bound on the number of pieces, then at the upper bound. Afterwards, we will propose a practical algorithm for designing these packages. We also explore a special kind of interlocking structure which has only one or a small number of movable pieces. For example, a burr puzzle. We will design a few blocks with joints whose combination can be assembled into almost any voxelized 3D model. Our blocks require very simple motions to be assembled, enabling robotic assembly. As proof of concept, we also develop a robot system to assemble the blocks. In some extreme conditions where construction components are small, controlling each component individually is impossible. We will discuss an option using global controls. These global controls can be from gravity or magnetic fields. We show that in some special cases where the small units form a rectangular matrix, rearrangement can be done in a small space following a technique similar to bubble sort algorithm

    Recursive interlocking puzzles

    Full text link
    • …
    corecore