272,439 research outputs found

    Interleukin-18

    Get PDF
    Interleukin-18 (IL-18), a recently described member of the IL-1 cytokine superfamily, is now recognized as an important regulator of innate and acquired immune responses. IL-18 is expressed at sites of chronic inflammation, in autoimmune diseases, in a variety of cancers, and in the context of numerous infectious diseases. This short review will describe the basic biology of IL-18 and thereafter address its potential effector and regulatory role in several human disease states including autoimmunity and infection. IL-18, previously known as interferon-gamma (IFN-gamma)-inducing factor, was identified as an endotoxin-induced serum factor that stimulated IFN-gamma production by murine splenocytes [<sup>1</sup> ]. IL-18 was cloned from a murine liver cell cDNA library generated from animals primed with heat-killed Propionibacterium acnes and subsequently challenged with lipopolysaccharide [<sup>2</sup> ]. Nucleotide sequencing of murine IL-18 predicted a precursor polypeptide of 192 amino acids lacking a conventional signal peptide and a mature protein of 157 amino acids. Subsequent cloning of human IL-18 cDNA revealed 65% homology with murine IL-18 [<sup>3</sup>] and showed that both contain an unusual leader sequence consisting of 35 amino acids at their N terminus

    cDNA Cloning of Biologically Active Chicken Interleukin-18

    Get PDF
    By searching a chicken EST database, we identified a cDNA clone that appeared to contain the entire open reading frame (ORF) of chicken interleukin-18 (ChIL-18). The encoded protein consists of 198 amino acids and exhibits approximately 30% sequence identity to IL-18 of humans and various others mammals. Sequence comparisons reveals a putative caspase-1 cleavage site at aspartic acid 29 of the primary translation product, indicating that mature ChIL-18 might consist of 169 amino acids. Bacterially expressed ChIL-18 in which the N-terminal 29 amino acids of the putative precursor molecule were replaced by a histidine tag induced the synthesis of interferon-γ (IFN-γ) in cultured primary chicken spleen cells, indicating that the recombinant protein is biologically active

    De-novo design of complementary (antisense) peptide mini-receptor inhibitor of interleukin 18 (IL-18).

    No full text
    Complementary (antisense) peptide mini-receptor inhibitors are complementary peptides designed to be receptor-surrogates that act by binding to selected surface features of biologically important proteins thereby inhibiting protein-cognate receptor interactions and subsequent biological effects. Previously, we described a complementary peptide mini-receptor inhibitor of interleukin-1beta (IL-1beta) that was designed to bind to an external surface loop (beta-bulge) of IL-1beta (Boraschi loop) clearly identified in the X-ray crystal structure of this cytokine. Here, we report the de-novo design and rational development of a complementary peptide mini-receptor inhibitor of cytokine interleukin-18 (IL-18), a protein for which there is no known X-ray crystal structure. Using sequence homology comparisons with IL-1beta, putative IL-18 surface loops are identified and used as a starting point for design, including a loop region 1 thought to be equivalent with the Boraschi loop of IL-1beta. Only loop region 1 complementary peptides are found to be promising leads as mini-receptor inhibitors of IL-18 but these are prevented from being properly successful owing to solubility problems. The application of "M-I pair mutagenesis" and inclusion of a C-terminal arginine residue are then sufficient to solve this problem and convert one lead peptide into a functional complementary peptide mini-receptor inhibitor of IL-18. This suggests that the biophysical and biological properties of complementary peptides can be improved in a rational and logical manner where appropriate, further strengthening the potential importance of complementary peptides as inhibitors of protein-protein interactions, even when X-ray crystal structural information is not readily available

    Interleukin-18 gene promoter polymorphisms and recurrent spontaneous abortion

    Get PDF
    Background: IL-18 is a multifunctional cytokine capable of inducing either Th1 or Th2 polarization depending on the immunologic milieu. IL-18 is detected at the materno-fetal interface very soon in early pregnancy. Two polymorphisms in the promoter region of the IL-18 gene at positions of -607 and -137 appear to have functional impacts. Objective: This study attempts to evaluate the frequency of these two polymorphisms in the IL-18 gene promoter in patients with recurrent spontaneous abortion (RSA) and normal pregnant women. Subjects and methods: One hundred and two RSA patients and 103 healthy pregnant women were enrolled in this study. Single nucleotide polymorphisms of the IL-18 gene at positions -607 (C/A) and -137 (G/C) were analyzed by the sequence-specific PCR method. Results: There was no significant association between the allele, genotype, and haplotype frequencies of the two single nucleotide polymorphisms (SNPs) in the IL-18 gene promoter and RSA. Conclusion: The results of this study showed that IL-18 gene promoter polymorphisms at positions -607 and -137 did not confer susceptibility to RSA in southern Iranian patients. © 2006 Elsevier Ireland Ltd. All rights reserved

    Interleukin-18, neutrophils, and ANCA

    Get PDF
    Hewins et al. show that IL-18 is expressed in the kidneys of patients with ANCA-associated glomerulonephritis, and that IL-18 primes neutrophils via p38 MAPK. These findings suggest a role for IL-18, including IL-18-induced TH1 polarization and IFN-γ production, in the progression of ANCA disease

    Interleukin 18 in the CNS

    Get PDF
    Interleukin (IL)-18 is a cytokine isolated as an important modulator of immune responses and subsequently shown to be pleiotropic. IL-18 and its receptors are expressed in the central nervous system (CNS) where they participate in neuroinflammatory/neurodegenerative processes but also influence homeostasis and behavior. Work on IL-18 null mice, the localization of the IL-18 receptor complex in neurons and the neuronal expression of decoy isoforms of the receptor subunits are beginning to reveal the complexity and the significance of the IL-18 system in the CNS. This review summarizes current knowledge on the central role of IL-18 in health and disease

    Interleukin-10 but not interleukin-18 may be associated with the immune response against well-differentiated thyroid cancer

    Get PDF
    OBJECTIVES: The aim of this study was to investigate the role of the interleukin-18 +105A/C and interleukin-10 -1082A/G germline polymorphisms in the development and outcome of differentiated thyroid carcinoma associated or not with concurrent thyroiditis. METHODS: We studied 346 patients with differentiated thyroid carcinomas, comprising 292 papillary carcinomas and 54 follicular carcinomas, who were followed up for 12-298 months (mean 76.10 ± 68.23 months) according to a standard protocol. We genotyped 200 patients and 144 control individuals for the interleukin-18 +105A/C polymorphism, and we genotyped 183 patients and 137 controls for the interleukin-10 -1082A/G polymorphism. RESULTS: Interleukin-18 polymorphisms were not associated with chronic lymphocytic thyroiditis or any clinical or pathological feature of tumor aggressiveness. However, there was an association between the presence of interleukin-10 variants and chronic lymphocytic thyroiditis. Chronic lymphocytic thyroiditis was present in 21.74% of differentiated thyroid carcinoma patients, most frequently affecting women previously diagnosed with Hashimoto's thyroiditis who had received a lower 131I cumulative dose and did not present lymph node metastases. CONCLUSIONS: We conclude that the inheritance of a G allele at the interleukin-10 -1082A/G polymorphism may favor a concurrent thyroid autoimmunity in differentiated thyroid carcinoma patients, and this autoimmunity may favor a better prognosis for these patients

    Interleukin-18 mediates cardiac dysfunction induced by western diet independent of obesity and hyperglycemia in the mouse

    Get PDF
    Obesity and diabetes are independent risk factors for heart failure and are associated with the consumption of diet rich in saturated fat and sugar, Western diet (WD), known to induce cardiac dysfunction in the mouse through incompletely characterized inflammatory mechanisms. We hypothesized that the detrimental cardiac effects of WD are mediated by interleukin-18 (IL-18), pro-inflammatory cytokine linked to cardiac dysfunction. C57BL/6J wild-type male mice and IL-18 knockout male mice were fed high-saturated fat and high-sugar diet for 8 weeks. We measured food intake, body weight and fasting glycemia. We assessed left ventricular (LV) systolic and diastolic function by Doppler echocardiography and cardiac catheterization. In wild-type mice, WD induced a significant increase in isovolumetric relaxation time, myocardial performance index and left ventricular end-diastolic pressure, reflecting an impairment in diastolic function, paired with a mild reduction in LV ejection fraction. IL-18 KO mice had higher food intake and greater increase in body weight without significant differences in hyperglycemia. Despite displaying greater obesity, IL-18 knockout mice fed with WD for 8 weeks had preserved cardiac diastolic function and higher left ventricular ejection fraction. IL-18 mediates diet-induced cardiac dysfunction, independent of food intake and obesity, thus highlighting a disconnect between the metabolic and cardiac effects of IL-18
    corecore