52 research outputs found

    Compiler-managed memory system for software-exposed architectures

    Get PDF
    Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2000.Includes bibliographical references (p. 155-161).Microprocessors must exploit both instruction-level parallelism (ILP) and memory parallelism for high performance. Sophisticated techniques for ILP have boosted the ability of modern-day microprocessors to exploit ILP when available. Unfortunately, improvements in memory parallelism in microprocessors have lagged behind. This thesis explains why memory parallelism is hard to exploit in microprocessors and advocate bank-exposed architectures as an effective way to exploit more memory parallelism. Bank exposed architectures are a kind of software-exposed architecture: one in which the low level details of the hardware are visible to the software. In a bank-exposed architecture, the memory banks are visible to the software, enabling the compiler to exploit a high degree of memory parallelism in addition to ILP. Bank-exposed architectures can be employed by general-purpose processors, and by embedded chips, such as those used for digital-signal processing. This thesis presents Maps, an enabling compiler technology for bank-exposed architectures. Maps solves the problem of bank-disambiguation, i.e., how to distribute data in sequential programs among several banks to best exploit memory parallelism, while retaining the ability to disambiguate each data reference to a particular bank. Two methods for bank disambiguation are presented: equivalence-class unification and modulo unrolling. Taking a sequential program as input, a bank-disambiguation method produces two outputs: first, a distribution of each program object among the memory banks; and second, a bank number for every reference that can be proven to access a single, known bank for that data distribution. Finally, the thesis shows why non-disambiguated accesses are sometimes desirable. Dependences between disambiguated and non-disambiguated accesses are enforced through explicit synchronization and software serial ordering. The MIT Raw machine is an example of a software-exposed architecture. Raw exposes its ILP, memory and communication mechanisms. The Maps system has been implemented in the Raw compiler. Results on Raw using sequential codes demonstrate that using bank disambiguation in addition to ILP improves performance by a factor of 3 to 5 over using ILP alone.by Rajeev Barua.Ph.D

    FIFTY YEARS OF MICROPROCESSOR EVOLUTION: FROM SINGLE CPU TO MULTICORE AND MANYCORE SYSTEMS

    Get PDF
    Nowadays microprocessors are among the most complex electronic systems that man has ever designed. One small silicon chip can contain the complete processor, large memory and logic needed to connect it to the input-output devices. The performance of today's processors implemented on a single chip surpasses the performance of a room-sized supercomputer from just 50 years ago, which cost over $ 10 million [1]. Even the embedded processors found in everyday devices such as mobile phones are far more powerful than computer developers once imagined. The main components of a modern microprocessor are a number of general-purpose cores, a graphics processing unit, a shared cache, memory and input-output interface and a network on a chip to interconnect all these components [2]. The speed of the microprocessor is determined by its clock frequency and cannot exceed a certain limit. Namely, as the frequency increases, the power dissipation increases too, and consequently the amount of heating becomes critical. So, silicon manufacturers decided to design new processor architecture, called multicore processors [3]. With aim to increase performance and efficiency these multiple cores execute multiple instructions simultaneously. In this way, the amount of parallel computing or parallelism is increased [4]. In spite of mentioned advantages, numerous challenges must be addressed carefully when more cores and parallelism are used.This paper presents a review of microprocessor microarchitectures, discussing their generations over the past 50 years. Then, it describes the currently used implementations of the microarchitecture of modern microprocessors, pointing out the specifics of parallel computing in heterogeneous microprocessor systems. To use efficiently the possibility of multi-core technology, software applications must be multithreaded. The program execution must be distributed among the multi-core processors so they can operate simultaneously. To use multi-threading, it is imperative for programmer to understand the basic principles of parallel computing and parallel hardware. Finally, the paper provides details how to implement hardware parallelism in multicore systems

    The exploitation of parallelism on shared memory multiprocessors

    Get PDF
    PhD ThesisWith the arrival of many general purpose shared memory multiple processor (multiprocessor) computers into the commercial arena during the mid-1980's, a rift has opened between the raw processing power offered by the emerging hardware and the relative inability of its operating software to effectively deliver this power to potential users. This rift stems from the fact that, currently, no computational model with the capability to elegantly express parallel activity is mature enough to be universally accepted, and used as the basis for programming languages to exploit the parallelism that multiprocessors offer. To add to this, there is a lack of software tools to assist programmers in the processes of designing and debugging parallel programs. Although much research has been done in the field of programming languages, no undisputed candidate for the most appropriate language for programming shared memory multiprocessors has yet been found. This thesis examines why this state of affairs has arisen and proposes programming language constructs, together with a programming methodology and environment, to close the ever widening hardware to software gap. The novel programming constructs described in this thesis are intended for use in imperative languages even though they make use of the synchronisation inherent in the dataflow model by using the semantics of single assignment when operating on shared data, so giving rise to the term shared values. As there are several distinct parallel programming paradigms, matching flavours of shared value are developed to permit the concise expression of these paradigms.The Science and Engineering Research Council

    Structure driven multiprocessor compilation of numeric problems

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1991.Title as it appears in the Feb. 1991 M.I.T. Graduate List: Structure driven compilation of numeric problems.Includes bibliographical references (leaves 134-136).by G.N. Srinivasa Prasanna.Ph.D

    The Fifth NASA Symposium on VLSI Design

    Get PDF
    The fifth annual NASA Symposium on VLSI Design had 13 sessions including Radiation Effects, Architectures, Mixed Signal, Design Techniques, Fault Testing, Synthesis, Signal Processing, and other Featured Presentations. The symposium provides insights into developments in VLSI and digital systems which can be used to increase data systems performance. The presentations share insights into next generation advances that will serve as a basis for future VLSI design

    Parallel and Distributed Computing

    Get PDF
    The 14 chapters presented in this book cover a wide variety of representative works ranging from hardware design to application development. Particularly, the topics that are addressed are programmable and reconfigurable devices and systems, dependability of GPUs (General Purpose Units), network topologies, cache coherence protocols, resource allocation, scheduling algorithms, peertopeer networks, largescale network simulation, and parallel routines and algorithms. In this way, the articles included in this book constitute an excellent reference for engineers and researchers who have particular interests in each of these topics in parallel and distributed computing

    Integrating compile-time and runtime parallelism management through revocable thread serialization

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1995.Includes bibliographical references (leaves 125-128).by Gino K. Maa.Ph.D
    corecore