817 research outputs found

    A Family of Interleaved High Step-Up DC-DC Converters by Integrating a Voltage Multiplier and an Active Clamp Circuits

    Full text link
    A family of interleaved current-fed high step-up dc-dc converters are introduced and analyzed here by combining a voltage multiplier (VM) and an active clamp circuit for high-voltage high-power applications. Low input currents and output voltages ripples values and high voltage-gains characteristics of these converters make them suitable for lots of dc-dc applications. All power devices operate entirely under soft switching conditions, even when wide load and input voltage variations are applied. Thus, they can be designed at high switching frequencies to reduce passive components sizes to achieve high-power density, one of the main targets of the power electronics researches. Also, their input and output ports common ground simplifies the gate-drives and control circuits. To verify the given analyses and simulations, a 120-320 V to 1 kV, 50-1300 W three-stage two-leg prototype converter has been implemented at 100 kHz. Based on the experimental results, maximum efficiency of 96.5% is achieved.Comment: 14 pages, 15 figure

    Survey on Photo-Voltaic Powered Interleaved Converter System

    Get PDF
    Renewable energy is the best solution to meet the growing demand for energy in the country. The solar energy is considered as the most promising energy by the researchers due to its abundant availability, eco-friendly nature, long lasting nature, wide range of application and above all it is a maintenance free system. The energy absorbed by the earth can satisfy 15000 times of today’s total energy demand and its hundred times more than that our conventional energy like coal and other fossil fuels. Though, there are overwhelming advantages in solar energy, It has few drawbacks as well such as its low conversion ratio, inconsistent supply of energy due to variation in the sun light, less efficiency due to ripples in the converter, time dependent and, above all, high capitation cost. These aforementioned flaws have been addressed by the researchers in order to extract maximum energy and attain hundred percentage benefits of this heavenly resource. So, this chapter presents a comprehensive investigation based on photo voltaic (PV) system requirements with the following constraints such as system efficiency, system gain, dynamic response, switching losses are investigated. The overview exhibits and identifies the requirements of a best PV power generation system

    Design and Evaluation of High Efficiency Power Converters Using Wide-Bandgap Devices for PV Systems

    Get PDF
    The shortage of fossil resources and the need for power generation options that produce little or no environmental pollution drives and motivates the research on renewable energy resources. Power electronics play an important role in maximizing the utilization of energy generation from renewable energy resources. One major renewable energy source is photovoltaics (PV), which comprises half of all recently installed renewable power generation in the world. For a grid-connected system, two power stages are needed to utilize the power generated from the PV source. In the first stage, a DCDC converter is used to extract the maximum power from the PV panel and to boost the low output voltage generated to satisfy the inverter side requirements. In the second stage, a DC-AC inverter is used to convert and deliver power loads for grid-tied applications. In general, PV panels have low efficiency so high-performance power converters are required to ensure highly efficient PV systems. The development of wide-bandgap (WBG) power switching devices, especially in the range of 650 V and 1200 V blocking class voltage, opens up the possibility of achieving a reliable and highly efficient grid-tied PV system. This work will study the benefits of utilizing WBG semiconductor switching devices in low power residential scale PV systems in terms of efficiency, power density, and thermal analysis. The first part of this dissertation will examine the design of a high gain DC-DC converter. Also, a performance comparison will be conducted between the SiC and Si MOSFET switching devices at 650 V blocking voltage regarding switching waveform behavior, switching and conduction losses, and high switching frequency operation. A major challenge in designing a transformerless inverter is the circulating of common mode leakage current in the absence of galvanic isolation. The value of the leakage current must be less than 300mA, per the DIN VDE 0126-1-1 standard. The second part of this work investigates a proposed high-efficiency transformerless inverter with low leakage current. Subsequently, the benefits of using SiC MOSFET are evaluated and compared to Si IGBT at 1200 V blocking voltage in terms of efficiency improvement, filter size reduction, and increasing power rating. Moreover, a comprehensive thermal model design is presented using COMSOL software to compare the heat sink requirements of both of the selected switching devices, SiC MOSFET and Si IGBT. The benchmarking of switching devices shows that SiC MOSFET has superior switching and conduction characteristics that lead to small power losses. Also, increasing switching frequency has a small effect on switching losses with SiC MOSFET due to its excellent switching characteristics. Therefore, system performance is found to be enhanced with SiC MOSFET compared to that of Si MOSFET and Si IGBET under wide output loads and switching frequency situations. Due to the high penetration of PV inverters, it is necessary to provide advanced functions, such as reactive power generation to enable connectivity to the utility grid. Therefore, this research proposes a modified modulation method to support the generation of reactive power. Additionally, a modified topology is proposed to eliminate leakage current

    Advanced topologies of high step-up DC-DC converters for renewable energy applications

    Get PDF
    This research is focused on developing several advanced topologies of high step-up DC-DC converters to connect low-voltage renewable energy (RE) sources, such as photovoltaic (PV) panels and fuel cells (FCs), into a high-voltage DC bus in renewable energy applications. The proposed converters are based on the combinations of various voltage-boosting (VB) techniques, including interleaved and quadratic structures, switched-capacitor (SC)-based voltage multiplier (VM) cells, and magnetically coupled inductor (CI) and built-in-transformer (BIT). The proposed converters offer outstanding features, including high voltage gain with low or medium duty cycle, a small number of components, low current and voltage stresses on the components, continuous input current with low ripple, and high efficiency. This research includes five new advanced high step-up DC-DC converters with detailed analyses. First, an interleaved converter is presented, which is based on the integration of two three-winding CIs with SC-based VM cells. Second, a dual-switch converter is proposed, which is based on the integration of a single three-winding CI with SC-based VM cells. Third, the SC-based VM cells are utilized to present three new Z-source (ZS)-based converters. Fourth, two double-winding CIs and a three-winding BIT are combined with SC-based VM cells to develop another interleaved high step-up converter. Finally, two double-winding CIs and SC-based VM cells are adopted to devise an interleaved quadratic converter with high voltage gain. The operating and steady-state analyses, design considerations, and a comparison with similar converters in the literature are provided for each converter. In addition, hardware prototypes were fabricated to verify the performance of the proposed converters --Abstract, page iv

    High Voltage Gain DC/DC Power Electronic Converters

    Get PDF
    A DC/DC power converter provides high voltage gain using integrated boost and voltage multiplier (VM) stages. The boost cell operates according to a switching sequence to alternately energize and discharge a primary winding. A VM cell electrically coupled to the primary winding of the boost cell charges a multiplier capacitor to a DC output voltage greater than the input voltage when the primary winding is energized and discharges the multiplier capacitor when primary winding is discharged

    High step up DC-DC converter topology for PV systems and electric vehicles

    Get PDF
    This thesis presents new high step-up DC-DC converters for photovoltaic and electric vehicle applications. An asymmetric flyback-forward DC-DC converter is proposed for the PV system controlled by the MPPT algorithm. The second converter is a modular switched-capacitor DC-DC converter, it has the capability to operate with transistor and capacitor open-circuit faults in every module. The results from simulations and tests of the asymmetric DC-DC converters have suggested that the proposed converter has a 5% to 10% voltage gain ratio increased to the symmetric structures among 100W – 300W power (such as [3]) range while maintaining efficiency of 89%-93% when input voltage is in the range of 25 – 30 V. they also indicated that the softswitching technique has been achieved, which significantly reduce the power loss by 1.7%, which exceeds the same topology of the proposed converter without the softswitching technique. Moreover, the converters can maintain rated outputs under main transistor open circuit fault situation or capacitor open circuit faults. The simulation and test results of the proposed modularized switched-capacitor DC-DC converters indicate that the proposed converter has the potential of extension, it can be embedded with infinite module in simulation results, however, during experiment. The sign open circuit fault to the transistors and capacitors would have low impact to the proposed converters, only the current ripple on the input source would increase around 25% for 4-module switched-capacitor DC-DC converters. The developed converters can be applied to many applications where DC-DC voltage conversion is alighted. In addition to PVs and EVs. Since they can ride through some electrical faults in the devices, the developed converter will have economic implications to improve the system efficiency and reliability

    Analysis and Investigation of Hybrid DC–DC Non-Isolated and Non-Inverting Nx Interleaved Multilevel Boost Converter (Nx-IMBC) for High Voltage Step-Up Applications: Hardware Implementation

    Get PDF
    In significant cases, the generated voltage needs to be step-up with high conversion ratio by using the DC-DC converter as per the requirement of the load. The drawbacks of traditional boost converter are it required high rating semiconductor devices and have high input current ripple, low efficiency, and reverse recovery voltage of the diodes. Recently, the family of Multilevel Boost Converter suggested and suitable configuration to overcome the above drawbacks. In this article, hybrid DC-DC non-isolated and non-inverting Nx Interleaved Multilevel Boost Converter (Nx-IMBC) is analyzed in Continuous Conduction Mode (CCM) and Discontinuous Conduction Mode (DCM) with boundary condition and investigated in detail. The Nx-IMBC circuit combined the features of traditional Interleaved Boost Converter (IBC) and Nx Multilevel Boost Converter (Nx-MBC). The modes of operation, design of Nx-IMBC and the effect of the internal resistance of components are presented. The comparison study with various recent DC-DC converters is presented. The experimental and simulation results are presented with or without perturbation in input voltage, output power and output reference voltage which validates the design, feasibility, and working of the converter

    Universal multilevel DC-DC converter with variable conversion ratio, high compactness factor and limited isolation feature

    Get PDF
    Journal ArticleA multilevel dc-dc converter with programmable conversion ratio (CR) is presented in this paper. This converter is a modified version of the MMCCC converter. A universal version of the MMCCC is developed in this paper, and the CR can be easily changed within a wide range. The MMCCC converter is based on capacitor-clamped topology, and the conversion ratio of the circuit depends on the number of active modules. However, like any other capacitor-clamped circuit, the MMCCC circuit requires a large number of transistors and capacitors to attain a high conversion ratio (CR). In this paper, a new circuit module will be introduced that can be connected in a cascade pattern to form the new converter. By using the new modular cell, it is possible to attain very high conversion ratio using a limited number of components, and thus more compactness compared to the predecessor MMCCC circuit can be achieved

    Analysis and Investigation of Hybrid DC–DC Non-Isolated and Non-Inverting Nx Interleaved Multilevel Boost Converter (Nx-IMBC) for High Voltage Step-Up Applications:Hardware Implementation

    Get PDF
    In significant cases, the generated voltage needs to be step-up with high conversion ratio by using the DC-DC converter as per the requirement of the load. The drawbacks of traditional boost converter are it required high rating semiconductor devices and have high input current ripple, low efficiency, and reverse recovery voltage of the diodes. Recently, the family of Multilevel Boost Converter suggested and suitable configuration to overcome the above drawbacks. In this article, hybrid DC-DC non-isolated and non-inverting Nx Interleaved Multilevel Boost Converter (Nx-IMBC) is analyzed in Continuous Conduction Mode (CCM) and Discontinuous Conduction Mode (DCM) with boundary condition and investigated in detail. The Nx-IMBC circuit combined the features of traditional Interleaved Boost Converter (IBC) and Nx Multilevel Boost Converter (Nx-MBC). The modes of operation, design of Nx-IMBC and the effect of the internal resistance of components are presented. The comparison study with various recent DC-DC converters is presented. The experimental and simulation results are presented with or without perturbation in input voltage, output power and output reference voltage which validates the design, feasibility, and working of the converter

    Non-isolated high gain DC-DC converter by quadratic boost converter and voltage multiplier cell

    Get PDF
    AbstractA novel non-isolated DC-DC converter is proposed by combining quadratic boost converter with voltage multiplier cell. The proposed converter has low semiconductor device voltage stress and switch utilization factor is high. The superiority of the converter is voltage stress of the semiconductor devices depends on voltage multiplier (VM) cell. By increasing the VM cell the stresses across the devices reduce drastically. The proposed converter has same number of components compared to certain voltage lift converters taken for comparison. A detailed comparative study is made on the proposed converter with few voltage lift converters in the literature, conventional boost with VM cell and quadratic boost converter. A 40W prototype is constructed with 12V input voltage and 96V output voltage to verify the performance and validate the theoretical analysis of the proposed converter
    • …
    corecore