25 research outputs found

    Sparse Modeling for Image and Vision Processing

    Get PDF
    In recent years, a large amount of multi-disciplinary research has been conducted on sparse models and their applications. In statistics and machine learning, the sparsity principle is used to perform model selection---that is, automatically selecting a simple model among a large collection of them. In signal processing, sparse coding consists of representing data with linear combinations of a few dictionary elements. Subsequently, the corresponding tools have been widely adopted by several scientific communities such as neuroscience, bioinformatics, or computer vision. The goal of this monograph is to offer a self-contained view of sparse modeling for visual recognition and image processing. More specifically, we focus on applications where the dictionary is learned and adapted to data, yielding a compact representation that has been successful in various contexts.Comment: 205 pages, to appear in Foundations and Trends in Computer Graphics and Visio

    Sparse and low rank approximations for action recognition

    Get PDF
    Action recognition is crucial area of research in computer vision with wide range of applications in surveillance, patient-monitoring systems, video indexing, Human- Computer Interaction and many more. These applications require automated action recognition. Robust classification methods are sought-after despite influential research in this field over past decade. The data resources have grown tremendously owing to the advances in the digital revolution which cannot be compared to the meagre resources in the past. The main limitation on a system when dealing with video data is the computational burden due to large dimensions and data redundancy. Sparse and low rank approximation methods have evolved recently which aim at concise and meaningful representation of data. This thesis explores the application of sparse and low rank approximation methods in the context of video data classification with the following contributions. 1. An approach for solving the problem of action and gesture classification is proposed within the sparse representation domain, effectively dealing with large feature dimensions, 2. Low rank matrix completion approach is proposed to jointly classify more than one action 3. Deep features are proposed for robust classification of multiple actions within matrix completion framework which can handle data deficiencies. This thesis starts with the applicability of sparse representations based classifi- cation methods to the problem of action and gesture recognition. Random projection is used to reduce the dimensionality of the features. These are referred to as compressed features in this thesis. The dictionary formed with compressed features has proved to be efficient for the classification task achieving comparable results to the state of the art. Next, this thesis addresses the more promising problem of simultaneous classifi- cation of multiple actions. This is treated as matrix completion problem under transduction setting. Matrix completion methods are considered as the generic extension to the sparse representation methods from compressed sensing point of view. The features and corresponding labels of the training and test data are concatenated and placed as columns of a matrix. The unknown test labels would be the missing entries in that matrix. This is solved using rank minimization techniques based on the assumption that the underlying complete matrix would be a low rank one. This approach has achieved results better than the state of the art on datasets with varying complexities. This thesis then extends the matrix completion framework for joint classification of actions to handle the missing features besides missing test labels. In this context, deep features from a convolutional neural network are proposed. A convolutional neural network is trained on the training data and features are extracted from train and test data from the trained network. The performance of the deep features has proved to be promising when compared to the state of the art hand-crafted features

    Exploiting Spatio-Temporal Coherence for Video Object Detection in Robotics

    Get PDF
    This paper proposes a method to enhance video object detection for indoor environments in robotics. Concretely, it exploits knowledge about the camera motion between frames to propagate previously detected objects to successive frames. The proposal is rooted in the concepts of planar homography to propose regions of interest where to find objects, and recursive Bayesian filtering to integrate observations over time. The proposal is evaluated on six virtual, indoor environments, accounting for the detection of nine object classes over a total of ∼ 7k frames. Results show that our proposal improves the recall and the F1-score by a factor of 1.41 and 1.27, respectively, as well as it achieves a significant reduction of the object categorization entropy (58.8%) when compared to a two-stage video object detection method used as baseline, at the cost of small time overheads (120 ms) and precision loss (0.92).</p

    Patch-based methods for variational image processing problems

    Get PDF
    Image Processing problems are notoriously difficult. To name a few of these difficulties, they are usually ill-posed, involve a huge number of unknowns (from one to several per pixel!), and images cannot be considered as the linear superposition of a few physical sources as they contain many different scales and non-linearities. However, if one considers instead of images as a whole small blocks (or patches) inside the pictures, many of these hurdles vanish and problems become much easier to solve, at the cost of increasing again the dimensionality of the data to process. Following the seminal NL-means algorithm in 2005-2006, methods that consider only the visual correlation between patches and ignore their spatial relationship are called non-local methods. While powerful, it is an arduous task to define non-local methods without using heuristic formulations or complex mathematical frameworks. On the other hand, another powerful property has brought global image processing algorithms one step further: it is the sparsity of images in well chosen representation basis. However, this property is difficult to embed naturally in non-local methods, yielding algorithms that are usually inefficient or circonvoluted. In this thesis, we explore alternative approaches to non-locality, with the goals of i) developing universal approaches that can handle local and non-local constraints and ii) leveraging the qualities of both non-locality and sparsity. For the first point, we will see that embedding the patches of an image into a graph-based framework can yield a simple algorithm that can switch from local to non-local diffusion, which we will apply to the problem of large area image inpainting. For the second point, we will first study a fast patch preselection process that is able to group patches according to their visual content. This preselection operator will then serve as input to a social sparsity enforcing operator that will create sparse groups of jointly sparse patches, thus exploiting all the redundancies present in the data, in a simple mathematical framework. Finally, we will study the problem of reconstructing plausible patches from a few binarized measurements. We will show that this task can be achieved in the case of popular binarized image keypoints descriptors, thus demonstrating a potential privacy issue in mobile visual recognition applications, but also opening a promising way to the design and the construction of a new generation of smart cameras

    Foundations, Inference, and Deconvolution in Image Restoration

    Get PDF
    Image restoration is a critical preprocessing step in computer vision, producing images with reduced noise, blur, and pixel defects. This enables precise higher-level reasoning as to the scene content in later stages of the vision pipeline (e.g., object segmentation, detection, recognition, and tracking). Restoration techniques have found extensive usage in a broad range of applications from industry, medicine, astronomy, biology, and photography. The recovery of high-grade results requires models of the image degradation process, giving rise to a class of often heavily underconstrained, inverse problems. A further challenge specific to the problem of blur removal is noise amplification, which may cause strong distortion by ringing artifacts. This dissertation presents new insights and problem solving procedures for three areas of image restoration, namely (1) model foundations, (2) Bayesian inference for high-order Markov random fields (MRFs), and (3) blind image deblurring (deconvolution). As basic research on model foundations, we contribute to reconciling the perceived differences between probabilistic MRFs on the one hand, and deterministic variational models on the other. To do so, we restrict the variational functional to locally supported finite elements (FE) and integrate over the domain. This yields a sum of terms depending locally on FE basis coefficients, and by identifying the latter with pixels, the terms resolve to MRF potential functions. In contrast with previous literature, we place special emphasis on robust regularizers used commonly in contemporary computer vision. Moreover, we draw samples from the derived models to further demonstrate the probabilistic connection. Another focal issue is a class of high-order Field of Experts MRFs which are learned generatively from natural image data and yield best quantitative results under Bayesian estimation. This involves minimizing an integral expression, which has no closed form solution in general. However, the MRF class under study has Gaussian mixture potentials, permitting expansion by indicator variables as a technical measure. As approximate inference method, we study Gibbs sampling in the context of non-blind deblurring and obtain excellent results, yet at the cost of high computing effort. In reaction to this, we turn to the mean field algorithm, and show that it scales quadratically in the clique size for a standard restoration setting with linear degradation model. An empirical study of mean field over several restoration scenarios confirms advantageous properties with regard to both image quality and computational runtime. This dissertation further examines the problem of blind deconvolution, beginning with localized blur from fast moving objects in the scene, or from camera defocus. Forgoing dedicated hardware or user labels, we rely only on the image as input and introduce a latent variable model to explain the non-uniform blur. The inference procedure estimates freely varying kernels and we demonstrate its generality by extensive experiments. We further present a discriminative method for blind removal of camera shake. In particular, we interleave discriminative non-blind deconvolution steps with kernel estimation and leverage the error cancellation effects of the Regression Tree Field model to attain a deblurring process with tightly linked sequential stages

    Multimedia Forensics

    Get PDF
    This book is open access. Media forensics has never been more relevant to societal life. Not only media content represents an ever-increasing share of the data traveling on the net and the preferred communications means for most users, it has also become integral part of most innovative applications in the digital information ecosystem that serves various sectors of society, from the entertainment, to journalism, to politics. Undoubtedly, the advances in deep learning and computational imaging contributed significantly to this outcome. The underlying technologies that drive this trend, however, also pose a profound challenge in establishing trust in what we see, hear, and read, and make media content the preferred target of malicious attacks. In this new threat landscape powered by innovative imaging technologies and sophisticated tools, based on autoencoders and generative adversarial networks, this book fills an important gap. It presents a comprehensive review of state-of-the-art forensics capabilities that relate to media attribution, integrity and authenticity verification, and counter forensics. Its content is developed to provide practitioners, researchers, photo and video enthusiasts, and students a holistic view of the field
    corecore